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ABSTRACT
Capturing the meaning of sentences has long been a chal-
lenging task. Current models tend to apply linear combina-
tions of word features to conduct semantic composition for
a bigger-granularity units e.g. phrase, sentence and docu-
ments. However, the semantic linearity does not always hold
in human language. For instance, the meaning of the phrase
"ivory tower" can not be deduced by linearly combining the
meanings of "ivory" and "tower". To address this issue, we
propose a new framework that models different levels of
semantic units (e.g. sememe, word, sentence and semantic
abstraction) on a single Semantic Hilbert Space, which nat-
urally admits a non-linear semantic composition by means
of a complex-valued vector word representation. An end-
to-end neural network (https://github.com/wabyking/qnn)
is proposed to implement the framework in the text classi-
fication task, and evaluation results on six benchmarking
text classification datasets demonstrate the effectiveness, ro-
bustness and self-explanation power of the proposed model.
Furthermore, intuitive case studies are conducted to help
end users to understand how the framework works.
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1 INTRODUCTION
In natural language understanding, it is crucial, yet challeng-
ing, to model sentences and capture their meanings. Essen-
tially, most statistical machine learning models [5, 16, 22, 27,
35] are built within a linear bottom-up framework, where
words are the basic features adopting a low-dimensional
vector representation, and a sentence is modeled as a lin-
ear combination of individual word vectors. Such linear se-
mantic composition is efficient, but does not always hold
in human language. For example, the phrase “ivory tower”,
which means “a state of privileged seclusion or separation
from the facts and practicalities of the real world”, is not a
linear combination of the individual meanings of “ivory” and
“tower”. Instead, it carries a new meaning. We are therefore
motivated to investigate a new language modeling paradigm
to account for such intricate non-linear combination of word
meanings.

Drawing inspiration from the recent findings in the emerg-
ing research area of quantum cognition, which suggest that
human cognition [2–4, 14] especially language understand-
ing [12, 13] exhibit certain non-classical phenomena (i.e.
quantum-like phenomena), we propose a theoretical frame-
work, named Semantic Hilbert Space, to formulate quantum-
like phenomena in language understanding and to model
different levels of semantic units in a unified space.
In Semantic Hilbert Space, we assume that words can be

modeled asmicroscopic particles in superposition states, over
the basic sememes (i.e. minimum semantic units in linguis-
tics), while a combination of wordmeanings can be viewed as
a mixed system of particles. The Semantic Hilbert Space rep-
resents different levels of semantic units, ranging from basic
sememes, words and sentences, on a unified complex-valued
vector space. In addition, we introduce a new semantic ab-
straction, named as Semantic Measurements, which are also
embedded in the same vector space and trainable to extract
high-level features from the mixed system.
As shown in Fig. 1, the Semantic Hilbert Space is built

on the basis of quantum probability (QP), which is the prob-
ability theory for explaining the uncertainty of quantum
superposition. As quantum superposition requires the use
of the complex field, Semantic Hilbert Space has complex
values and operators. In particular, the probability function
is implemented by a (complex) density operator which is
unique according to Gleason’s theorem. We argue that the
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complex-valued vector representation of words can inher-
ently admit an mathematical formulation for complicated,
non-linear combination of word meanings.
Semantic Hilbert Space adopts a complex-valued vector

representation of unit length, where each component adopts
an amplitude-phase form z = reiϕ . We hereby hypothesize
that the amplitude r and complex phase ϕ can be used to
encode different levels of semantics such as lexical-level
co-occurrence, hidden sentiment polarity or topic-level se-
mantics. When word vectors are combined, even in a simple
complex-valued addition form, the resulting expression will
entail a non-linear composition of amplitudes and phases,
thus indicating a complicated fusion of different levels of
semantics. A more detailed explanation is given in Sec. 2. In
this way, the complex-valued word embedding is fundamen-
tally different from existing real-valued word embedding.
A series of ablation tests indicate that the complex-valued
word embedding can increase performance.

The Semantic Hilbert Space is an abstract representation of
our approach to modeling language through QP. At the level
of implementation, an efficient and effective computational
framework is needed to cope with large text collections and
user query streams. To do so, we propose an end-to-end neu-
ral network architecture, which provides means for training
of the network components and modularity of components.
Each component corresponds to a physical meaning of

quantum probability with well-defined mathematical con-
straints. Moreover, each component is easier to understand
than the kernels in convolutional neural network and cells
in recurrent neural networks. The network proposed in this
paper is evaluated on six benchmarking datasets for text
classification and achieves a steady increase over existing
models. Moreover, it is shown that the proposed network is
advantageous due to its high robustness and self-explanation
capability.

2 SEMANTIC HILBERT SPACE
The mathematical foundation of Quantum Theory is estab-
lished on a Hilbert Space over the complex field. In order to
borrow the underlying mathematical formalism of quantum
theory for language understanding, it is necessary to build
such a Hilbert Space for language representation. In this
study, we build a Semantic Hilbert Space H over the complex
field. As is illustrated in Fig. 1, multiple levels of semantic
units are modeled on this common Semantic Hilbert Space.
In the rest of this section, the semantic units under modeling
are introduced separately.

We follow the standard Dirac Notation for Quantum The-
ory. A unit vector ®µ and its transpose ®µT are denoted as a ket
|µ⟩ and a bra ⟨µ | respectively. The inner product and outer
product of two unit vectors ®u and ®v are denoted as ⟨u |v⟩ and
|u⟩ ⟨v | respectively.

2.1 Sememes
Sememes are the minimal non-separable semantic units of
word meanings in language universals [20]. For example, the
word “ironsmith” is composed of sememes “human”, “occupa-
tion”, “metal” and “industrial”. We assume that the Semantic
Hilbert Space H is spanned by a set of orthogonal basis
{|ej ⟩}

n
j=1 corresponding to a finite closed set of sememes

{ej }
n
j=1. In the quantum language, the set of sememes are

modeled as basis states, which is the basis for representing
any quantum state. In Fig. 1, the axes of the Semantic Hilbert
Space correspond to the set of sememe states, and semantic
units with larger granularity are represented on its basis.

2.2 Words
The meaning of a word is a combination of sememes. We
adopt the concept of superposition to formulate this com-
bination. Essentially, a word w is modeled as a quantum
particle in superposition state, represented by a unit-length
vector in the Semantic Hilbert Space H , as can be seen in
Fig. 1. It can be written as a linear combination of the basis
states for sememes:

|w⟩ =

n∑
j=1

r je
iϕj |ej ⟩ (1)

where the complex-valuedweight r jeiϕj denotes howmuch
the meaning of word w is associated with the sememe ej .
Here {r j }nj=1 are non-negative real-valued amplitudes satis-
fying

∑n
j=1 r j

2 =1 and ϕ j ∈ [−π ,π ] are the corresponding
complex phases. We could also transfer the complex number
in a complex plane as reiϕ = r cosϕ + ir sinϕ.

It is worth noting that the complex phases {ϕ j } are crucial
as they implicitly entail the quantum interference between
words. Suppose two wordsw1 andw2 are of weights r (1)j eiϕ

(1)
j

and r (2)j eiϕ
(2)
j for the sememe ej . The two words in combina-

tion are therefore at the state ej with a probability of

p = |r (1)j eiϕ
(1)
j + r (2)j eiϕ

(2)
j |2 (2)

= (r (1)j )2 + (r (2)j )2 + 2r (1)j r (2)j cos(ϕ(1)
j − ϕ(2)

j )

Where the term term2r (1)j r (2)j cos(ϕ(1)
j − ϕ(2)

j reflects the in-
terference between the two words, where as the classical
case corresponds to a particular case ϕ(1)

j = ϕ(2)
j = 0.

2.3 Semantic Compositions
As is illustrated in Fig. 1, we view a word composition (e.g. a
sentence) as a bag of words [21], each of which is modeled
as a particle in superposition state on the Semantic Hilbert
SpaceH . To obtain the semantic composition of words, we
leverage the concept of quantummixture and formulate the
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Figure 1: Illustration of SemanticHilbert Space. The green, blue and orange colors correspond to three differentwordsmodeled
as quantum particles. The black dotted circle represents the unit ball in the Semantic Hilbert Space. The ellipsoid in solid line
refers to the quantum probability distribution defined by the density matrix of the word composition. The purple lines are
semantic measurements. The intersections of the ellipsoids and semantic measurements are in thick red lines, the lengths of
which correspond to measurement probabilities.
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word composition as a mixed system composed of the word
superposition states. The system is in a mixed state repre-
sented by a n-by-n density matrix ρ on H , which is positive
semi-definite with trace 1. It is computed as follows:

ρ =
∑
j

p(j) |wi ⟩ ⟨wi |, (3)

where |wi ⟩ denotes the superposition state of the ith word,
is the classical probability of the state |wi ⟩ with

∑
j p(j) = 1.

It determines the contribution of the wordwi to the overall
semantics.
The complex-valued density matrix ρ can be seen non-

classical distribution of sememes inH . Its diagonal elements
are real and form a classical distribution of sememes, while
its complex-valued off–diagonal entries encode the interplay
between sememes, which in turn gives rise to the interfer-
ence between words.

A density matrix assigns a probability value for any state
on H such that the values for any set of orthogonal states
sum up to 1 [19]. Hence it is be visualized as an ellipsoid in
Fig. 1, the length of whose intersection with a unit vector
denoting its quantum probability.

2.4 Semantic Measurements
As a non-classical probability distribution, a sentence density
matrix carries rich and often redundant information. In order
to extract the relevant information to a concrete task from
the semantic composition, we build a set of measurements
and compute the probability that the mixed system falls onto
each of the measurements as a high-level abstraction of the
semantic composition.

Suppose our proposed semantic measurements are associ-
ated with a set of measurement projectors {Pi }ki=1. According
to the Born’s rule [11], applying the measurement projector
Pi onto the sentence density matrix ρ yields the following
result:

pi = tr (Piρ) (4)

And the obtained probabilities {pi }ki=1 are the high-level
representation of ρ. Here, we only consider pure states as
measurement states, i.e. Pi = |vi ⟩ ⟨vi |. Moreover, we ignore
the constraints of the measurements states {|vi ⟩}ki=1 (i.e. or-
thogonality or completeness) but keep them trainable, so that
the most suitable measurements can be determined automat-
ically by the data in a concrete task, such as classification
or regression. In this way, the trainable semantic measure-
ments can be understood as a similar approach to supervised
dimensionality reduction [18], but in a quantum probability
framework with complex values.

3 QUANTUM PROBABILITY DRIVEN
NETWORK

In order to implement the proposed framework, we further
propose an end-to-end neural network on its basis. Fig. 4
shows the architecture of the proposed Quantum Probability
Driven Network (QPDN). In this section, we will introduce
the architecture layer by layer.

3.1 Embedding Layer
The parameters of embedding Layer consist of {R,Φ,Π},
denoting the amplitude embedding, phase embedding and
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Figure 2: Architecture of Quantum probability-driven Neural Network.
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term-weight lookup table. Eq. 1 expresses a quantum rep-
resentation as a unit-length, complex-valued vector repre-
sentation for a word w , i.e. |w⟩ = [r1e

iϕ1 , r2e
iϕ2 ...rne

iϕn ]T .
The term-weight lookup table is used to weight words for
semantic combination, which will be described in the next
subsection. During training, word embeddings need to be
normalized to unit length after each batch. While it would be
faster if we perform normalization after several batches [50].

3.2 Mixture Layer
A sentence is modeled as a density matrix, which is con-
structed in a bottom-up way in Sec. 2.3. Instead of using
uniform weights in Eq. 3, word-sensitive weights are used
for each words, which is commonly used in IR, e.g. inverse
document frequency (IDF) as a word-dependent weight in
TF-IDF scheme [42]. The new formula for the density matrix
is given as follows:

ρ =
m∑
i

p(wi ) |wi ⟩ ⟨wi | (5)

In order to guarantee the unit trace length for density
matrix, the word weights which are from the lookup table
in a sentence are normalized to a probability value through
a softmax operation: p(wi ) =

eπ (wi )∑m
j eπ (wj )

. Compared to IDF

weight, the normalized weight for a specific word in our
approach is not static, but updated adaptively in training
phase. Even in the inference/test phase, the real term weight
i.e.p(wi ) is also not static, but highly depends on the neighbor
context words through nonlinear softmax function.

3.3 Measurement Layer
The measurement layer adopts a set of 1-order measurement
projectors {|vi ⟩ ⟨vi |}ki=1, while |vi ⟩ ⟨vi | is the outer product
of its corresponding state in Semantic Hilbert Space |vi ⟩. Af-
ter each measurement, we can obtain a measured probability
for each measurement state like qj = tr (ρ |vj ⟩ ⟨vj |). Finally,
we can obtain a vector ®q = [q1,q2, ...qk ]. Similarly to the
word vectors which are also represented as unit states, the
states |vi ⟩ are also normalized after several batches.

3.4 Dense Layer
The vector ®q in measurement layer, which consists k pos-
itive scalar numbers, is used to infer the label for a given
sentence. A dense layer with softmax activation is adopted
after measurement layer to get a classification probability
distribution, i.e. ®̂y = softmax(®q ·W ). The loss is designed as
a cross-entropy loss between ®̂y and the one-hot label ®y.

4 EXPERIMENTS
4.1 Datasets
Our model is evaluated on 6 datasets for text classification:
CR customer review [24], MPQA opinion polarity [48], SUBJ
sentence subjectivity [37], MRmovie review [37], SST binary
sentiment classification [40], and TREC question classifica-
tion [30]. The statistics of them are shown in Tab. 1.
4.2 Experimental Setup
4.2.1 Baselines. We compare the proposed QPDN with

variousmodels, including Uni-TFIDF,Word2vec, FastText [25]
and Sent2Vec [36] as unsupervised representation learning
baselines, CaptionRep [22] and DictRep [23] as supervised
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Table 1: Dataset Statistics. (CV means 10-fold cross valida-
tion for testing performance.)

Dataset train test vocab. task Classes
CR 4K CV 6K product reviews 2
MPQA 11k CV 6K opinion polarity 2
SUBJ 10k CV 21k subjectivity 2
MR 11.9k CV 20k movie reviews 2
SST 67k 2.2k 18k movie reviews 2
TREC 5.4k 0.5k 10k Question 6

Table 2: Experimental Results in percentage (%). The best
performed value (except for CNN/LSTM) for each dataset is
in bold. where † means a significant improvement over Fas-
Text.

Model CR MPQA MR SST SUBJ TREC
Uni-TFIDF 79.2 82.4 73.7 - 90.3 85.0
Word2vec 79.8 88.3 77.7 79.7 90.9 83.6
FastText [25] 78.9 87.4 76.5 78.8 91.6 81.8
Sent2Vec [36] 79.1 87.2 76.3 80.2 91.2 85.8
CaptionRep [22] 69.3 70.8 61.9 - 77.4 72.2
DictRep [23] 78.7 87.2 76.7 - 90.7 81.0
Ours: QPDN 81.0† 87.0 80.1† 83.9† 92.7† 88.2†

CNN [26] 81.5 89.4 81.1 88.1 93.6 92.4
BiLSTM [17] 81.3 88.7 77.5 80.7 89.6 85.2

representation learning baselines, as well as CNN [26] and
BiLSTM [17] for advanced deep neural networks. We report
the classification accuracy values of these models from the
original papers.

4.2.2 Parameter Setting. In this paper, we use Glove word
vectors [38] with 50,100,200 and 300 dimensions respectively.
The amplitude embedding values are initialized by L2-norm,
while the phases in complex-valued embedding are randomly
initialized in −π to π . We search for the best performance
in a parameter pool, which contains a learning rate in {1e-
3,1e-4,1e-5,1e-6}, an L2-regularization ratio in {1e-5,1e-6.1e-
7,1e-8}, a batch size in {8,16,32,64,128}, and the number of
measurements in {5,10,20,50,100,200}.

4.2.3 Parameter Scale. Themain parameters in our model
are amplitude embedding R and phase embedding Φ. Since
both of them are n × |V | in shape, the number of parameters
is roughly two times that of fastText [33]. For the other
parameters, Π is |V | ×1, {|vi ⟩}ki=1 is k ×2n, whileW is k × |L|
with L being the label set. Apart from word embeddings, the
model is robust with limited scale at k × 2n+n× |V | +k × |L|
for the number of parameters.

4.3 Results
The results in Tab. 1 demonstrate the effectiveness of our
model, with improved classification accuracies over some
strong baseline supervised and unsupervised representation

Table 3: Physical meanings and constraints

Components DNN QPDN

Sememe -
basis vector / basis state
{w |w ∈ Cn, | |w | |2 = 1, }
complete &orthogonal

Word real vector
(−∞, ∞)

unit complex vector / superposition state
{w |w ∈ Cn, | |w | |2 = 1}

Low-level
representation

real vector
(−∞, ∞)

density matrix /mixed system
{ρ |ρ = ρ∗, tr (ρ) = 1}

Abstraction CNN/RNN
(−∞, ∞)

unit complex vector / measurement
{w |w ∈ Cn, | |w | |2 = 1}

High-level
representation

real vector
(−∞, ∞)

probabilities/ measured probability
(0, 1)

models on most of the datasets except MPQA. In compar-
ison with more advanced models including BiLSTM and
CNN, ourmodel generally performs better than BiLSTMwith
increased accuracy values on the multi-class classification
dataset (TREC) and three binary text classification datasets
(MR, SST & SUBJ). However, it under-performs CNN on all
6 datasets with a difference of over 2% on 3 of them (MPQA,
SST & TREC), probably because that it uses fewer parameters
and simpler structures. We argue that QPDN achieves a good
balance between effectiveness and efficiency, due to the fact
that it outperforms BiLSTM.

5 DISCUSSIONS
This section discusses on the power of self-explanation and
conducts an ablation test to examine the usefulness of im-
portant components of the network, especially the complex-
valued word embedding. Additionally , the intuitive meaning
of the discriminative semantic directions is shown in Sec. 5.3.

5.1 Self-explanation Components
As is shown in Tab. 3, all components in our model have
a clear physical meaning corresponding to quantum prob-
ability, where classical Deep Neural Network (DNN) can
not well explain the role each component plays in the net-
work. Essentially, we construct a bottom-up framework to
represent each level of semantic units on a uniform Seman-
tic Hilbert Space, from the minimum semantic unit, i.e. se-
meme, to the sentence representation. The framework is op-
erationalized through superposition, mixture and semantic
measurements. On the one hand, the explanation is reflected
by well-designed constraints for all the components. On the
other hand, some intuitive explanation can be performed on
the crucial components of the network i.e, measurements, as
shown in Sec. 5.3.
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Table 4: Ablation Test

Setting SST ∆

FastText [25] 0.7880 -0.0511
FastText [25] with double-dimension real word vectors 0.7883 -0.0508
fixed amplitude part but trainable phase part 0.8199 -0.0192
replace trainable weights with fixed mean weights 0.8303 -0.0088
replace trainable weights with fixed IDF weights 0.8259 -0.0132
non-trainable projectors with fixed orthogonal ones 0.8171 -0.0220
replace projectors with dense layer 0.8221 -0.0170
QPDN 0.8391 -

5.2 Ablation Test
An ablation test is conducted to examine how each com-
ponent influences the final performance of QPDN. In par-
ticular, a double-length real word embedding network is
implemented to examine the use of complex-valued word
embedding, while mean weights and IDF weights are used
as alternative word weighting strategies to check the neces-
sity of introducing trainable weights. A set of non-trainable
orthogonal projectors and a dense layer on top of the sen-
tence density matrix are implemented to analyze the effect
of trainable semantic measurements.
We use 100-dimensional real-valued word vectors and

50-dimensional complex-valued vectors for the models in
the ablation test. All models under ablation are comparable
in terms of time cost. Tab. 4 shows that each component
plays an important role in the QPDN model. In particular,
replacing complex embedding with double-dimension real
word embedding leads to a 5% drop in performance, which
indicates that the complex-valued word embedding is not
merely doubling the number of parameters.

5.3 Discriminative Semantic Directions
In order to better understand the well-trained measurement
projectors, we obtained the top 10 nearest words in complex-
valued vector for each trained measurement state (like |vi ⟩),
using KD tree [9]. Due to limited space, we take 5 mea-
surements from the trained model for the MR dataset, and
select words from the top 10 nearest words to each mea-
surement. As can be seen in Tab. 5, the first measurement
is roughly about changes over time, the second concern-
ing being motivated or forced to do something. While the
third measurement groups uncommon non-English words to-
gether. The last two measurement also group words sharing
similar meanings. It is therefore interesting to see that rele-
vant words can somehow be grouped together into certain
topics during the training process, which may be discrimi-
native for the given task.

Table 5: The learned measurement for dataset MR. They are
selected according to nearest words for a measurement vec-
tor in Semantic Hibert Space

Measurement Selected neighborhood words
1 change, months, upscale, recently, aftermath
2 compelled, promised, conspire, convince, trusting
3 goo, vez, errol, esperanza, ana
4 ice, heal, blessedly, sustains, make
5 continue, warned, preposterousness, adding, falseness

6 RELATEDWORKS
6.1 Word embedding based Sentence modelling
Neural language model is firstly proposed to use neural net-
work for language modelling, and it has a side effect for
word embedding, and the it is further investigated by [8] and
further developed by [15, 34], tends to be more and more
dominant. Word2vec [33] makes the training of word em-
bedding in more fast way e.g. CBow and Skip-gram, with
removing non-linear layers and other tricks e.g. hierarchical
softmax and negative sampling. The another popular word
embedding named Glove [38] make advantage of global ma-
trix factorization and count-based methods. However, we
argue that it is hard to represent the complex meaning of
a word with only a real-valued vector (i.e. a point in a low-
dimension space), especially in the cases of polysemy or
ambiguity. Gaussian Embedding [46] is a alternative density-
based approach to represent a word as a Guassian distribu-
tion. This inspires us to exploit new word representation,
namely complex-valued embedding for language modelling.
As the mainstream approach, word embedding mainly

models a word as a fix-length vector to represent its seman-
tics, and combines word embeddings to obtain sentence rep-
resentation. It can be achieved through unsupervised [22, 27,
35], supervised [5, 6] approaches or by deep deep neural net-
works [26, 43]. Essentially, these works leverage lexical-level
co-occurrences or sequential orders as the basis of word se-
mantic features, and apply highly linear operations to word
features in order to obtain a sentence representation. Even
though they have achieved superior performances in many
NLP tasks, they are insufficient to explicitly model the more
complicated non-linear semantic combination of words as
described above. Meanwhile, most of current models are
hard to be understood by end users, from both intuitive and
theoretical point of view.
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6.2 Quantum Theory in Information Retrieval
Ever since the pioneering work of Van Rijsbergen [45], Quan-
tum Theory has been applied in Information Retrieval, yield-
ing a series of novel retrieval approaches, such as quan-
tum probability ranking principle [39, 53] and quantum lan-
guage model [29, 41, 49]. However, these research are lim-
ited to ad-hoc retrieval scenarios and fail to address more
complicated tasks in information access and retrieval (IAR),
which requires fine-grained modeling of textual data. In
such scenarios as text classification, question answering,
reading comprehension and multi-turn dialogue systems,
embedding-based neural networks are the state of art. The
first quantum-inspired model specifically aiming at these
tasks is a Neural Network based Quantum-like Language
Model (NNQLM) [51]. Nonetheless, it is still a traditional
neural network with real-valued density matrices and CNN,
and therefore insufficient to capture the essential properties
of quantummechanics, with only real-valued represenations.
To the best of our knowledge, our study is the first to propose
a unified quantum probability framework for fundamental
text understanding tasks, with complex-valued representa-
tions.

6.3 Quantum-like Phenomena for Language
Quantum-like phenomena in human cognition of information[2–
4, 13, 14], especially in language understanding, has recently
been investigated [14]. For example, Bruza et al. [13] dis-
cussed word association/entanglement and pointed out that
a context might affect word association via the standard
interpretation of quantum measurement. Wang et al. [47]
conducted a series of user studies to demonstrate that the
document relevance judgment could be largely affected by
the previous documents in a quantum-like interference man-
ner. Blacoe et al. [10] proposed a bottom-up quantum ap-
proach to model distributed semantics with dependency
graphs, achieving a competitive performance in word simi-
larity and association tasks. T Basile and Tamburini [7] build
a new language model based on quantum notation with state
evolution. These works provide us with inspirations and in-
sights to investigate in a quantum probabilistic framework
to enhance language understanding.

6.4 Other related Approaches
The discussions on the use of complex numbers have started
as early as the advent of quantum-inspired information re-
trieval (QIR) models. Van Rijsbergen, in his pioneering book
of QIR [45], suggested to use complex numbers as a mecha-
nism to store information, and proposed to assign the ampli-
tude and complex phase to represent TF (Term Frequency)
and IDF (Inverse Document Frequency) of a term respec-
tively. This idea was further discussed in Zuccon et al. [54]

and implemented on real ad-hoc retrieval datasets. How-
ever, it is still a simple and empirical attempt. Recently, a
deep complex network [44] was proposed, where all real lay-
ers were replaced with their complex-valued counterparts.
Despite the complex-valued structure of the network, the
inputs and outputs are real-valued vectors like in any general
neural networks, and the model is not related to quantum
probability. Aerts et al. [1] elaborated a quantum model for
the concepts in a collection of web documents, where a con-
cept admits a complex-valued representation containing an
amplitude and a complex phase, but with only simple illus-
trative examples. Lin et al. [31] used amplitude and phase
as the parameters to implement the inference process with
diffraction principle, lead to a light-speed prediction for im-
age classification. This also provides a very huge potentials
for our QPDN in the language with light-speed inference.

Levine et al. [28] attempted to draw a connection between
quantum entanglement and neural networks, and illustrated
that neural networks and quantum mechanics can be more
closely connected and integrated. It alsomotivates us to carry
out deeper investigations on this topic in the current and fu-
ture studies. Zhang et al. [52] proposes a CNN implement for
the decomposition of quantum many body function, which
reveals the potential of quantum insights from empirical
point of view. Liu et al. [32] proposed a novel text classifier
with training the Hamiltonian matrix and the unitary oper-
ator for better fitting the dataset. This model preliminarily
reveals the potential of the quantum classifier in supervised
learning tasks.

7 CONCLUSIONS
In order to better model the non-linearity of word seman-
tic composition, we have developed a quantum-inspired
framework that models different granularities of semantic
units on the same Semantic Hilbert Space, and implement
this framework into an end-to-end text classification net-
work. The network shows a promising performance on 6
benchmarking text datasets, in effectiveness, robustness and
self-explanation ability. Moreover, the complex-valued word
embedding approach, which inherently achieves non-linear
combination of word meanings, does bring benefits to the
classification accuracy in a comprehensive ablation study.
This work is among the first steps to apply the quantum

probabilistic framework to text modeling. We believe it is a
promising direction. On one hand, we would like to further
extend this work by considering deeper and more compli-
cated structures such as attention or memory mechanism in
language, in order to investigate related quantum-like phe-
nomena on textual data to provide more intuitive insights.
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