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Abstract

Understanding human language is an emerging interdisciplinary field bringing

together artificial intelligence, natural language processing, and cognitive sci-

ence. It goes beyond linguistic modality, by effectively combining non-verbal

behaviour (i.e., visual, acoustic) which is crucial for inferring speaker intent.

Being a rapidly growing area of research, a range of models of multimodal

language analysis has been introduced within the last two years. In this

paper, we present a large-scale empirical comparison of eleven state-of-the-

art (SOTA) modality fusion approaches to find out which aspects could be

effectively used to solve the problem of multimodal language analysis. An

important feature of our study is the critical and experimental analysis of the

SOTA approaches. In particular, we replicate diverse complex neural net-

works, utilizing attention, memory, and recurrent components. We propose a

methodology to investigate both their effectiveness and efficiency in two mul-
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timodal tasks: a) video sentiment analysis and b) emotion recognition. We

evaluate all approaches on three SOTA benchmark corpora, namely, a) Mul-

timodal Opinion-level Sentiment Intensity (MOSI), b) Multimodal Opinion

Sentiment and Emotion Intensity (MOSEI), which is the largest available

dataset for video sentiment analysis, and c) Interactive Emotional Dyadic

Motion Capture (IEMOCAP). Comprehensive experiments show that the

attention mechanism components are the most effective for modelling interac-

tions across different modalities. Besides, utilization of linguistic modality as

a pivot modality for nonverbal modalities, incorporation of long-range cross-

modal interactions across multimodal sequences, and integration of modality

context, are also among the most effective aspects for human multimodal

affection recognition tasks.

Keywords: multimodal human language understanding, video sentiment

analysis, emotion recognition, reproducibility in multimodal machine

learning

1. Introduction

Human language is inherently multimodal and is manifested via words

(i.e., linguistic modality), gestures (i.e., visual modality), and vocal intona-

tions (i.e., acoustic modality). Consequently, we need to process both verbal

(e.g., linguistic utterances) and nonverbal signals (e.g., visual, acoustic ut-

terances) to better understand human language. Verbal signals often vary

dynamically in different nonverbal contexts. Even though for humans, com-

prehending human language is an easy task, this is a non-trivial challenge for

machines. Giving machines the capability to effectively understand human
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language opens new horizons for human-machine conversation systems [1],

tutoring systems [2], and health care [3], to name a few applications.

The challenge of modelling human language lies in coordinating time-

variant modalities. At its core, this research area focuses on modelling in-

tramodal and crossmodal dynamics [4]. Intramodal dynamics refer to in-

teractions within a specific modality, independent of other modalities. An

example is word interactions in a sentence. Crossmodal dynamics refer to

interactions across several modalities, for example, a simultaneous presence

of a negative word, with a frown, and a soft voice. Such interactions, occur-

ring at the same time step, are called synchronous crossmodal interactions.

Crossmodal interactions might span over a long-range multimodal sequence

and are called asynchronous crossmodal interactions. For example, the neg-

ative word, with the soft voice at the time step t might interact with the

frown at the time step t+ 1.

Early approaches for learning multimodal representations have widely

utilized conventional natural language processing (NLP) techniques in mul-

timodal settings [5, 6, 7, 8]. A recent trend in multimodal embedding learning

research is to build more complex models utilizing attention, memory, and re-

current components [9, 10, 11, 12, 13, 14, 15]. Various review papers have sur-

veyed the advancements in multimodal machine learning [16, 17, 18, 19, 20].

In particular, they mostly provide an insightful organization of modality fu-

sion strategies. They also identify broader challenges faced by multimodal

representation learning, such as synchronization across different modalities,

confidence level, contextual information etc. Though, none of them has

conducted a comprehensive empirical study across different state-of-the-art
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(STOA) fusion approaches to multimodal language analysis, with aim at

providing a critical and experimental analysis. Such an extensive empirical

evaluation would be useful to find out which aspects in the STOA approaches

are the most effective to solve the problem of multimodal language analy-

sis. This paper aims to fill the gap. In particular, we replicate and evaluate

the most recent SOTA fusion approaches for modelling human language on

three widely used benchmark corpora for multimodal sentiment and emotion

analysis [21, 22, 23] and investigate the following Research Questions (RQ).

• RQ1 How effective are the current machine learning based multimodal

fusion strategies for the sentiment analysis and emotion recognition

tasks?

• RQ2 How efficient are the SOTA multimodal fusion strategies, and

how could the effectiveness affects efficiency, in the context of the mul-

timodal sentiment and emotion analysis tasks?

• RQ3 Which components/aspects in the multimodal language models

and fusion strategies are the most effective?

The rest of the paper is organized as follows: Section 2 briefly reviews the

related work. Section 3 describes the experiments in detail. The experimental

results are shown and discussed in Section 4 and 5 respectively. Finally,

Section 5 concludes the paper.

2. Related Work

We provide a review of multimodal representation learning and multi-

modal time series for video sentiment analysis and emotion recognition.
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2.1. Multimodal representation learning

Multimodal representation learning is a research area of great interest

due to the huge multimedia (e.g., textual, visual, and acoustic) data avail-

able in different contexts. A recent trend in NLP research has been geared

towards a variety of multimodal applications, including visual recognition

[24], multimodal sentiment analysis [25], visual-acoustic emotion recognition

[26], visual question answering [27], and medical image analysis [28].

An early overview of multimodal information retrieval (MMIR) presents

briefly the basic concepts of MMIR with emphasis on challenges in MMIR

systems, feature extraction, and fusion strategies [29]. A more comprehen-

sive review of various multimodal tasks is given by [16]. In [17], Sun reviews

multiple kernel and subspace algorithms for multi-view learning. Recent ad-

vances in multimodal machine learning have been reviewed covering various

directions of the field, such as representation, translation, alignment, fusion,

and co-learning [19, 18].

More recently, research in the affective computing field has attracted the

attention of many researchers due to the recent availability of relatively large-

scale datasets for video sentiment analysis and emotion recognition tasks [21,

22, 23]. A comprehensive literature review of multimodal affective analysis

frameworks is given by Poria et al. [20]. Furthermore, Fatemeh et al. [30]

survey emotion body gesture recognition approaches. However, none of the

above surveys provides a comprehensive empirical study of the very recent

multimodal language fusion strategies for sentiment analysis.
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2.2. Multimodal Sentiment Analysis

Learning multimodal language embeddings is based on modelling in-

tramodal and crossmodal dynamics. Early, late, and hybrid fusion strate-

gies have been utilized to model such dynamics. Early fusion approaches

integrate features after being extracted [31]. Late fusion approaches build

up diverse classifiers for each modality and then aggregate their decisions by

voting [32], averaging [33], weighted sum [34] or a trainable model [35, 36].

The hybrid approach combines outputs from early fusion and individual uni-

modal predictors. Early work has pushed some progress towards multimodal

language embedding learning [37, 38]. A range of neural approaches, such as

RNNs [39], LSTMs [40], and CNNs [41], have been used for learning language-

based multimodal embeddings by fusing either input features per timestamp

or unimodal output hidden units [5, 6, 7, 8].

Recent advances in deep learning have led to more sophisticated ap-

proaches for modelling temporal intramodal and crossmodal interactions

across unimodal sequences. Early advancements of this field utilized tensor-

based fusion approaches for entangling [42] and disentangling [43, 44] mul-

timodal representations. Those approaches fuse unimodal features at the

utterance level [42, 43, 44], word-level [45], or in a hierarchical manner [46].

Considering human language contains time-series and thus requiring fusing

time-varying signals, a recent trend is to exploit LSTMs and RNNs to fuse

unimodal representations at the feature level [12, 47]. Amongst those ap-

proaches, some of them use hybrid memory components, constructed from

the hidden units of each modality at the previous timestamp and fed as an

additional input of the next timestamp [12, 13]. Inspired by successful trends
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in NLP, some approaches introduced encoder-decoder structures in sequence-

to-sequence learning by translating a target modality to a source modality

[14, 15, 48], reinforcement learning [49], fuzzy logic[50], and simple but strong

baselines [51]. Recently, attention mechanisms have been exploited for align-

ing different modalities, resulting in better-performed modality fusion ap-

proaches [9, 10, 11].

In this work, we align nonverbal features with words before training. That

is, we model crossmodal interactions on aligned timestamps (i.e., synchronous

crossmodal interactions) without considering long-range contingencies across

different modalities (i.e., asynchronous crossmodal interactions). Though, re-

cently a few approaches have been proposed to model long-range crossmodal

interactions across multimodal sequences [9, 11, 47]. However, working on

unaligned features is a non-trivial task. A fair comparison between word-

aligned sequences and unaligned multimodal time series shows a decreased

performance for unaligned multimodal streams [9].

Finally, it is worth noting that there exist other approaches considering

contextual information from surrounding utterances, thus aiding the senti-

ment analysis and emotion recognition tasks. Current work utilizes super-

vised NLP approaches for modeling contextual interactions among utter-

ances, including recurrent neural networks [6, 52], memory networks [53,

54], sequence-to-sequence networks [55], graph neural networks [56], and

quantum-inspired networks [57]. Nevertheless, these approaches are beyond

the scope of this paper since they consider modality fusion as a simple con-

catenation of unimodal features.
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3. Methodology

This section details the methodology we take for our empirical study

of the most recent STOA multimodal language fusion approaches, in the

context of video sentiment and emotion analysis tasks. We first formulate

the task on which our study is carried out. Sentiment analysis is a binary

multimodal classification task inferring either positive or negation emotions.

Emotion recognition is a multimodal multilabel classification task inferring

one or more emotions, i.e., happy and joyful. Though, both tasks target to

capture emotions of video utterance and fall under affective computing field

[58].

3.1. Task definition

The goal is to infer the emotion of utterances from video speakers. Each

video consists of N sequential utterances U = (U1, ..., Ui, ..., UN), where i

is the ith utterance. Each utterance Ui is associated with three modalities,

linguistic, visual, and acoustic, Ui = (U l
i , U

v
i , U

a
i ), 1 ≤ i ≤ N . The cor-

responding labels for the N segments are denoted as y = (y1, ..., yi, ..., yN),

yi ∈ R. We apply word-level alignment, where visual and acoustic features

are averaged across the time interval of each spoken word. Then, we zero-pad

the utterances to obtain time-series data of the same length. After this step,

language, visual, and acoustic features have the same length L. For the lin-

guistic modality the Ui utterance is represented by U l
i = (l1i , ..., l

L
i ). Similarly

for visual and acoustic modalities, it is represented by U v
i = (v1

i , ..., v
L
i ) and

Ua
i = (a1

i , ..., a
L
i ), respectively.
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3.2. Datasets

We empirically evaluate the SOTA approaches from the last two years on

multimodal sentiment analysis task by using two SOTA benchmark data-sets,

namely CMU Multimodal Opinion-level Sentiment Intensity (CMU-MOSI)

[21] and the largest available dataset for multimodal sentiment analysis,

CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI)

[22]. We also evaluate the approaches on the multimodal emotion recogni-

tion task using the IEMOCAP dataset [23]. We compare all approaches on

word-aligned multimodal language sequences, leaving the very challenging

comparison with unaligned language sequences for future work.

CMU-MOSI is a relatively balanced (1176 positive and 1023 negative

utterances) human multimodal sentiment analysis dataset consisting of 2,199

short monologue video clips (each lasting the duration of a sentence). It has

1,284, 229, and 686 utterances in training, validation, and test sets. CMU-

MOSEI is a larger scale sentiment and emotion analysis dataset made up

of 22,777 movie review video clips from more than 1,000 online Youtube

speakers. The training, validation, and test sets comprise of 16,265, 1,869 and

4,643 utterances, respectively. Each sample is labelled by human annotators

with a ratio score from -3 (highly negative) to 3 (highly positive) including

zero. Hence, the multimodal sentiment analysis task can be formulated as a

regression problem.

For MOSI and MOSEI, we use the CMU-Multi-modal Data SDK1 [22] for

feature extraction. Following previous work [9, 13, 47, 42, 43, 59], we convert

1https://github.com/A2Zadeh/CMU-MultimodalSDK
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video transcripts into 300-dimensional pre-trained Glove word embeddings

(glove.840B.300d) [60]. Besides, GloVe embedding is more computationally

affordable than other more effective, yet computationally expensive, word

embeddings [61, 62]. Facet 2 is used to capture facial muscle movement

including per-frame basic and advanced emotions and facial action units.

We use VOCAREP [63] to extract low-level acoustic features (e.g., 12 Mel-

frequency cepstral coefficients, pitch tracking and voiced/unvoiced segment-

ing features, glottal source parameters, peak slope parameters, and maxima

dispersion quotients). For MOSI, we extract visual and acoustic features at

a frequency of 15Hz and 12.5 Hz respectively. For MOSEI, we extract at

a frequency of 15 Hz and 20Hz. To reach the same time alignment across

modalities, we apply a word-level alignment. To align visual and acous-

tic modalities with words we use P2FA [64]. Then, to obtain the aligned

timesteps, we perform averaging on the visual and audio features within

these time ranges. All sequences in the word-aligned case have length 50.

For each word the dimension of the feature vector is set to 300 (linguistic),

20 (visual), and 5 (acoustic) for MOSI, and 300 (linguistic), 35 (visual), and

74 (acoustic) for MOSEI.

For multimodal emotion recognition, we use IEMOCAP. It consists of 151

videos about dyadic interactions, where professional actors are required to

perform scripted scenes that elicit specific emotions. It has 2,717, 798, 938

utterances in training, validation, and test sets. Each sample is labelled by

human annotators for 4 emotions (neutral, happy, sad, angry). The labels

2https://pair-code.github.io/facets/
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for every emotion are binary. This allows us to reduce the multiclass learning

problem to a problem solvable using binary classifiers. Following a one-vs-

all strategy, for each emotion, we train a robust classifier to recognize one

emotion from all the others. We follow a similar process to CMU-MOSEI for

extracting features from 3 streams. The linguistic, facial and acoustic em-

beddings are 300-dimensional, 35-dimensional, and 74-dimensional vectors,

respectively. All sequences are word-aligned having length 50.

3.3. Evaluation Metrics

For evaluating effectiveness on MOSI and MOSEI, we adopt a series of

evaluation performance metrics used in prior work [22, 9, 13, 12]: binary

accuracy (i.e., Acc2 : positive sentiment if values ≥ 0, and negative sentiment

if values < 0), 7-class accuracy (i.e., Acc7 : sentiment score classification in

Z ∩ [−3, 3]), F1 score, Mean Absolute Error (MAE) of the score, and the

Pearson’s correlation (Corr) between the model predictions and regression

ground truth. For all the metrics, higher values denote better performance,

except MAE where lower values denote better performance.

For evaluating effectiveness on IEMOCAP, in contrast to previous work

reporting accuracy [9, 47], we report recall and F1 score for individual emotion

classes. We empirically found that accuracy was a misleading measurement

for evaluating one-vs-all emotion classifiers. This is because there is a class

imbalance. For instance, the ratio of utterances labelled as happy versus the

other emotion equals 1/6. Indeed, some classifiers showed high accuracy even

they failed to detect many emotion class correctly. To evaluate the overall

performance of the SOTA models, we also calculate the weighted recall and

F1 score measurements.
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We evaluate efficiency by reporting a) the number of parameters for each

approach, b) the training time of learning, i.e., speed-up during inference,

and c) the validation set convergence.

3.4. Experiments

To address our research questions, we devise three experiments as follows:

1. Experiment 1: We first replicate the SOTA approaches following the

same experiment set up, as reported in the original papers. Then,

we investigate the performance through a comprehensive critical and

experimental analysis.

2. Experiment 2: We compare the SOTA approaches in terms of effi-

ciency.

3. Experiment 3: We conduct several ablation studies to understand

a) the importance of modalities and b) which components contribute

most for modelling crossmodal interactions across the three modalities.

3.5. SOTA models

We replicate into a unified framework in PyTorch a variety of sequen-

tial attention mechanism, memory, tensor fusion, and translation neural ap-

proaches3. Most of their authors have made implementations available on

github. We replicated from scratch the EF-LSTM, LF-LSTM, RMFN, and

MARN models.

Except Multimodal Transformer (MulT) [9], the rest of the modality fu-

sion methods are typically RNN-based deep learning networks. Though,

3The code for our models and experiments can be found on Github.
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we go beyond a typical one by one comparison and propose a taxonomy

in terms of model features, namely: recurrent-based, tensor-based, atten-

tion mechanism-based, memory-based, and translation-based networks. This

taxonomy will enable researchers to better understand the SOTA field and

identify directions for future research.

3.5.1. Recurrent cell-based networks

This category includes modality fusion approaches which mainly utilize

recurrent cells for each time step. In this case, the cells get stacked one after

the other implementing an efficient stacked RNN.

• Early-Fusion LSTM (EF-LSTM) [40] EF-LSTM concatenates lin-

guistic, visual, and acoustic features at each timestamp, and builds an

LSTM to construct sentence-level multimodal representation. The last

hidden state is taken and sequentially passed to two fully-connected

layers to produce the output sentiment.

• Late-Fusion LSTM (LF-LSTM) [40]. LF-LSTM builds LSTMs for

linguistic, visual, and acoustic inputs separately, and concatenates the

last hidden state of the three LSTMs as sentence-level multimodal rep-

resentation. It is taken and sequentially passed to two fully-connected

layers to produce the output sentiment.

• Recurrent Multistage Fusion Network (RMFN) [10] RMFN mod-

els crossmodal interactions through a divide-and-conquer approach in

several stages. Intramodal dynamics are modelled through modality-

specific RNNs. For each timestep, the unimodal hidden states of RNNs
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are concatenated. Then, the concatenated representation is processed

in multiple stages. For each stage, the most important modalities are

highlighted through an attention module, and then fused with the pre-

vious stage fused representations. In the end, a summary action gen-

erates a multimodal joint representation which is fed back into the

intramodal RNNs as an additional input for the next timestep.

3.5.2. Tensor-based networks

This group of networks is mainly based on the tensor product of modali-

ties for entangling and disentangling information.

• Tensor Fusion Network (TFN) [42] TFN explicitly models view-

specific and cross-view dynamics by creating a multi-dimensional tensor

that captures unimodal, bimodal, trimodal interactions across linguis-

tic, visual, and acoustic modalities.

• Low-rank Multimodal Fusion (LMF) [43]. LMF adopts the same

approach as TFN to model the multimodal representation. After that,

it applies a tensor decomposition approach by calculating the inner

product of multimodal tensor with a weight tensor. The output is a

low-dimension vector which used to make predictions.

3.5.3. Attention mechanism-based networks

These approaches mainly exploit various attention mechanism compo-

nents to fuse modalities.

• Multi-Attention Recurrent Network (MARN) [59]. MARM cap-

tures crossmodal dynamics at each timestamp. A multi-attention block
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is built to construct a crossmodal representation based on hidden states

of the previous timestamp and fed into the inputs of the current times-

tamp. The crossmodal representation and hidden states of the last

timestamp are concatenated to form a multimodal sentence embedding,

which is sequentially passed to two fully-connected layers to produce

the output sentiment.

• Multimodal Transformer (MulT) [9] MulT merges multimodal

time-series via a feed-forward fusion process from multiple directional

pairwise crossmodal transformers. Each crossmodal transformer is a

deep stacking of several crossmodal attention blocks. As a final step, it

concatenates the outputs from the crossmodal transformers and passes

the multimodal representation through a sequence model to make pre-

dictions.

• Multimodal Uni-Utterance - Bimodal Attention (MMUU-BA)

[10] MMUU-BA encodes linguistic, visual, and acoustic streams through

three separate Bi-GRU layers followed by fully-connected dense layers.

Then, pairwise-attentions are computed across all possible combina-

tions of modalities, i.e, linguistic-visual, linguistic-acoustic, and visual-

acoustic. Finally, individual modalities and bimodal attention pairs

are concatenated to create the multimodal representation, used for fi-

nal classification. MMUU-BA makes predictions by applying a fully-

connected layer to each timestamp. In our experiments, since we do

not considerate proceeding utterances, we extract the last hidden state

only and fit it to a fully-connected layer to make predictions.
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• Recurrent Attended Variation Embedding Network (RAVEN)

[47] RAVEN learns multimodal-shifted word representations conditioned

on the visual and acoustic modalities. Concretely, visual and acoustic

embeddings interact with each word embedding through an attention

gated mechanism to yield a nonverbal visual-acoustic vector. The re-

sulted vector is integrated into the original word embedding to model

the intensity of the visual-acoustic influence on the original word. By

applying the same method for each word in a sentence, the model out-

puts a multimodal-shifted word-level representation. The representa-

tion is encoded into an LSTM followed by a fully connected layer to

produce an output that fits the task. Yet, in our experiments, we

consider the last hidden state to construct nonverbal visual-acoustic

embeddings since we work on word-level aligned data.

3.5.4. Memory-based networks

This category extends recurrent neural model with a memory component

to model modality interactions.

• Memory Fusion Network (MFN) [13] MFN is a memory fusion

network that builds a multimodal gated memory component, and the

memory cell is updated along the evolution of the hidden states of three

unimodal LSTMs. The final memory cell is concatenated with the last

hidden states of unimodal LSTMs as the multimodal sentence repre-

sentation, and it is sequentially passed to two fully-connected layers to

produce the output sentiment.
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3.5.5. Translation-based networks

This category includes neural machine translation approaches for mod-

elling human language by converting a source modality to a target modality.

• Multimodal Cyclic Translations Network (MCTN) [14] MCTN

is a hierarchical neural machine translation network with a source

modality and two target modalities. The first level learns a joint rep-

resentation by using back-translation. Then, the intermediate repre-

sentation is translated into the second target modality without back-

translation. The multimodal representation is fed into RNN for final

classification. For our experiments, the source modality is the linguistic

one.

We first fine-tune all models by performing a fifty-times grid search over

their parameter pool. We report the final settings in Appendix A. After the

fine-tuning process, we train again all the models for 50 epochs, five times.

We use Adam optimizer with L1 loss as the loss function for CMU-MOSI and

CMU-MOSEI since sentiment analysis is formulated as a regression problem.

For IEMOCAP, we use cross-entropy loss since emotion recognition is formu-

lated as classification problem. We report the average performance on the

test set for all experiments.

4. Results

4.1. Effectiveness

In Table 1 we see that attention mechanism-based approaches, i.e., MulT,

MMUU-BA, and RAVEN, attain the highest binary accuracy (being between
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78.2% and 78.7%) on MOSI. MulT reports just 0.1 % higher accuracy than

RAVEN. Yet, for Acc7, Raven reports an increased performance of 34.6%

as compared to 33.8% of MMUU-BA and 33.6% of MulT. TFN achieves

the highest accuracy of 34.9% for Acc7 . Raven and MMUU-BA report

the highest correlation (Corr). Despite the low accuracy, MCTN attains the

lowest mean absolute error. This might imply that MCTN needs more epochs

to converge (we found in [14] that MCTN has been trained for 200 epochs).

Overall, RAVEN is the most effective approach on MOSI. T-tests did not

reveal a significant difference in binary accuracy across all approaches.

There is a discrepancy between the empirical results from our experi-

ments and the reported ones in literature. Specifically, we empirically found

lower accuracy for all the SOTA approaches, except RAVEN which attained

an increased accuracy of 78.6% compared to 78% in [47]. A possible reason

for the discrepancy between literature and our empirical results may be be-

cause different versions of the MOSI dataset have been used in the published

works. Those versions consists of different feature dimensions and sequence

lengths. Another possible explanation for this might be the fine-tuning pa-

rameters, which are rarely reported in current work, making reproducibility

a particularly difficult task. Currently, MulT is the SOTA approach in lit-

erature reporting an increased binary accuracy of 83.0% compared to 78.7%

in our experiments on MOSI. Note that, for MulT we use the same datasets,

implementation, and configuration settings as described in [9].

In Table 2 we present the results for multimodal sentiment analysis on

MOSEI. All approaches attain an improved performance compared to that

one on MOSI dataset. We suspect this is because MOSEI is much larger
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Table 1: Comparative analysis across the SOTA approaches on MOSI.

Approach Acc7 Acc2 F1 MAE Corr

EF-LSTM [40] 32.7 75.8 75.6 1.000 0.630

LF-LSTM [40] 32.7 76.2 76.2 0.987 0.624

RMFN [10] 32.3 76.8 76.4 0.980 0.626

TFN [42] 34.9 75.6 75.5 1.009 0.605

LMF [43] 30.5 75.3 75.2 1.018 0.605

MARN [59] 31.8 76.4 76.2 0.984 0.625

MulT [9] 33.6 78.7 78.4 0.964 0.662

MMUU-BA [10] 33.8 78.2 78.1 0.947 0.675

RAVEN [47] 34.6 78.6 78.6 0.948 0.674

MFN [13] 31.9 76.2 75.8 0.988 0.622

MCTN [14] 32.3 76.2 76.2 0.903 0.630

dataset. MMUU-BA attains an increased binary accuracy of 80.7% compared

to 80.2% of RAVEN and MulT. MMUU-BA also reports the highest accuracy

for Acc7 and the highest correlation (Corr in Table 2) compared to all other

approaches. In general, we found that attention mechanism-based fusion

strategies, i.e., MMUU-BA, MulT, and RAVEN, significantly outperform the

other approaches. Yet there is no significant difference across MMUU-BA,

MulT, and RAVEN in terms of binary performance.

MOSEI is a recently published dataset. We can only compare the em-

pirical results from our experiments to the reported ones in literature for

RAVEN, MulT and MMUU-BA. In literature, MulT reports the best binary

performance, attaining an increased binary accuracy of 82.5% compared to
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Table 2: Comparative analysis across the SOTA approaches on MOSEI.

Approach Acc7 Acc2 F1 MAE Corr

EF-LSTM [40] 45.7 78.2 77.1 0.687 0.573

LF-LSTM [40] 47.1 79.2 78.5 0.655 0.614

TFN [42] 47.3 79.3 78.2 0.657 0.618

LMF [43] 47.6 78.2 77.6 0.660 0.623

MARN [59] 47.7 79.3 77.8 0.646 0.629

MulT [9] 46.6 80.2 79.8 0.657 0.661

MMUU-BA [10] 48.4 80.7 80.2 0.627 0.672

RAVEN [47] 47.8 80.2 79.8 0.636 0.654

MFN [13] 47.4 79.9 79.1 0.646 0.626

80.2% in our experiments even though we used the same experimental set-

tings as in [9]. In contrast, MMUU-BA reports an increased binary accuracy

of 80.7% compared to 79.8% in literature. In [47], authors do not conduct

experiments on MOSEI. Yet, in [9], for RAVEN, authors report a decreased

accuracy of 79.1% compared to 80.2% (see Table 2). We could not run exper-

iments for RMFN and for MCTN on MOSEI. RMFN was computationally

too expensive and MCTN could not support MOSEI.

Following previous work [65], the binary performance across different

modality fusion approaches is compared for the MOSI and MOSEI tasks,

as shown in Figure 1. Each line style corresponds to the taxonomy of the

SOTA approaches. According to the Figure 1, all approaches improve on

the MOSEI task. In addition, MulT and Raven yield similar performance

for both MOSI and MOSEI tasks. That is, they show similar learning be-
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haviour. Though, MMUU-BA shows a positive trend with a sharper rise in

the performance for MOSEI task than MulT and RAVEN approaches.

Figure 1: Accuracy comparison across different modality fusion approaches for MOSI and

MOSEI tasks.

We present the results for the emotion recognition task in Table 3. In

contrast to sentiment analysis tasks, instead of accuracy, we calculate the

class-wise recall to find out how many emotions detected correctly from total

emotions for each emotion class. We also calculate the weighed recall for

each modality fusion method. The results show that happy emotion class is

the most challenging for all approaches, whilst the angry class is the most

straightforward. Attention mechanism approaches, e.g., MulT and MMUU-

BA, are the most effective for the emotion recognition task. In particularly,

MMUU-BA achieves the highest recall for happy and sad classes, whilst MulT

recalls the most neutral utterances (see Table 3). Though, EF-LSTM has the
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highest sensitivity for the angry class. Overall, MulT is the most effective

approach for the emotion recognition task yielding an increased weighted

recall of 60.2% as compared to 58.7% of the next best approach, i.e., MMUU-

BA. We can not directly compare our results with those in literature, since

binary accuracy is used as a prime performance measurement. Though, in

[9], MulT is also the SOTA for IEMOCAP task.

Table 3: Comparative analysis across the SOTA approaches on IEMOCAP dataset.

Neutral Happy Sad Angry Weighted

Approach Recall F1 Recall F1 Recall F1 Recall F1 Recall F1

EF-LSTM [40] 57.3 61.2 20.7 30.8 57.7 62.0 80.7 71.7 57.8 59.5

LF-LSTM [40] 58.5 60.0 31.7 40.0 53.7 56.0 66.1 69.6 55.5 58.6

RMFN [10] 56.9 60.3 17.3 25.6 55.4 57.3 65.5 70.8 53.2 57.2

TFN [42] 60.0 61.9 19.3 28.0 53.4 57.3 76.4 72.9 56.7 58.7

LMF [43] 46.6 54.7 34.5 40.6 49.8 54.3 80.1 72.9 53.6 57.0

MARN [59] 55.1 59.6 27.1 35.1 57.2 57.4 70.4 71.2 55.2 58.4

MulT [9] 64.9 64.2 19.9 29.6 56.8 58.5 79.3 70.9 60.2 59.7

MMUU-BA [10] 57.0 60.0 35.6 41.8 58.2 61.2 75.5 71.9 58.7 60.5

RAVEN [47] 33.6 42.6 0.7 1.4 14.5 23.2 21.4 32.7 22.0 30.3

MFN [13] 49.4 55.6 35.1 42.1 56.2 55.5 64.5 67.3 52.4 56.5

Overall, we see that all approaches attain a lower binary performance

compared to the reported one in literature, except RAVEN, achieving a

higher performance on both MOSEI and MOSI, and MMUU-BA achiev-

ing a higher accuracy on MOSEI. RAVEN is the most effective model for

the MOSI task, MMUU-BA for MOSEI, and MulT for IEMOCAP. That

is, attention mechanism-based approaches are the most effective for human

multimodal affection recognition tasks. MulT is a robust competitive model,

but in contrast to the literature, we found that it does not attain the highest
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performance on sentiment analysis task. Yet, without considering efficiency,

we noticed that MulT, MMUU-BA, and RAVEN are the most appropriate

models for sentiment analysis, whilst MMUU-BA and MulT the most ap-

propriate ones for emotion recognition. While RAVEN showed outstanding

performance for the sentiment analysis tasks, it yields the lowest performance

for the emotion recognition task.

Error Analysis. We conduct an error analysis on the above experiments. Fig-

ure 2 shows the percent error4 per sentiment class on MOSI. Each line style

corresponds to the taxonomy of the SOTA approaches. Despite MOSI is

a relatively balanced dataset, consisting of 1176 positive and 1023 negative

utterances, all fusion modality approaches yield a higher percent error for

the positive sentiment class compared to the negative sentiment class (see

Figure 2). In particular, most approaches show a twice higher percent error

for the positive sentiment class compared to the negative sentiment class. We

also noticed that attention-mechanism-based approaches, e.g., MMUU-BA,

MulT, and RAVEN, achieve the lowest percent error for the positive senti-

ment class. Though, tensor-based modality fusion approaches, e.g., TFN and

LMF, are more effective in terms of performance for the negative sentiment

class. It is worth noting that RAVEN, achieving the lowest percent error for

the positive class, yields the highest percent error for the negative class.

Figure 3 depicts the percent error per sentiment class on MOSEI. In

contrast to MOSI, all approaches achieve a low percent error for the positive

4We define as percent error within a class, the difference between the estimated number

and the actual number when compared to the actual number expressed in percent format.
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Figure 2: Percent error per sentiment class on MOSI.

sentiment class, whereas they struggle with negative utterances. We suspect

this is because MOSEI is an unbalanced dataset. That is, it consists of 11544

positive and 4721 negative utterances. The results show that once we got

enough data, there is no any significant difference among different fusion

modality approaches in terms of performance (see positive class in Figure 3).

Figure 4 shows the percent error for each emotion on IEMOCAP. The re-

sults show that the percent error is high, i.e., greater than 64%, for the Happy

emotion class. We suppose that this is due to the small number of samples.

Specifically, the Happy emotion class has only 135 samples compared to 383,

193, and 227 of the Neutral, Sad, and Angry emotion class in the test set.

This implies that the performance for each emotion class is analogous to

the number of samples for each class. Though, some approaches, such as
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Figure 3: Percent error per sentiment class on MOSEI.

MMUU-BA and MulT, are more effective than others, such as RAVEN and

MFN. That is, there is a considerable variance in percent error across differ-

ent modality fusion approaches.

We further carry out the following analysis on test outputs of MOSI. We

group the outputs of all the samples in the test dataset. The first group (i.e.,

easy) is 49 cases where all methods predict correctly; the second group (i.e.,

medium) is 21 cases where half the methods predict correctly; the third (i.e.,

hard) is 18 cases where 9 out of 11 methods predict correctly; and the fourth

(i.e., very hard) is 15 cases where all methods predict wrongly. We expose

four samples for each group in Table 4.

Out of 686 utterances, 49 ones, that is 7.1%, are predicted correctly by

all approaches. These are usually sentences consisting of highly sentiment
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Figure 4: Percentage error per emotion class on IEMOCAP.

words such as “horrible”, “love”, etc (see Table 4, Easy category). Only 21

utterances, 3.1%, predicted correctly by half of the approaches. All those ut-

terances are either neutral or positive. For example, one possible reason that

approaches fail to make a correct prediction for utterances “But it does have

some adult humour” and “It actually surprised me” (see Table 4, Medium

category) is due to missing content. 18 utterances, that is 2.6%, can not

be correctly predicted by 9 out of 11 approaches, even though utterances

include highly sentiment words like “pretty girl”, “laughing”, etc (see Table

4, Hard category). Finally, all approaches can not predict 15 utterances,

that is 2.2%. Utterances like “Everything that happened in Shrek 1,2, and

3 are wiped away” and “A lot of people don’t like Scream 2 ” (see Table 4,

Very Hard category) are mainly dominated by highly negative words, but the
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Table 4: Error Cases across all approaches on MOSI

Category Case Label

Easy (100%) This movie was horrible. Neg.

I had no idea why I even saw this movie. Neg.

This movie seemed um a little long. Neg.

You will really love this movie if you are 8. Pos.

Medium (50%) But it does have some adult humour. Pos.

He is a pretty average guy. Pos.

The two women in this movie are particularly

good looking.

Pos.

It actually surprised me. Pos.

Hard (20%) They are back to you having two killers

thankfully.

Pos.

She is a really pretty girl. Pos.

It had me laughing out loud. Pos.

Not a bad idea for a sequel. Pos.

Very Hard (0%) Who I don’t usually like. Pos.

I did like Transformers 2 even though a lot

of people didn’t like that.

Pos.

A lot of people don’t like Scream 2. Pos.

Everything that happened in Shrek 1,2, and

3 are wiped away.

Pos.

overall sentiment is positive. It is worth mentioning that all the error cases of

medium, hard, and very hard group are positive sentiment utterances only.
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To our knowledge, this is a novel finding.

4.2. Efficiency

In experiment 2, we report the model sizes (i.e., parameters), the training

time of learning, and the validation set convergence. We illustrate the valida-

tion set convergence across all competitive approaches on MOSI, MOSEI and

IEMOCAP in Figure 5, Figure 6, and Figure 7 respectively. For MOSI, we

empirically find that MMUU-BA converges faster to better results at train-

ing compared to other approaches (see Figure 5). RAVEN shows a more

stabilized mean absolute error (MAE) at training compared to MulT, but it

is still higher compared to MMUU-BA. In general, all approaches converge

quite fast, up to 10 epochs. We assume that this is due to the small data

size. We observe that MCTN needs much more than 50 epochs to converge.

For MOSEI, we observe that EF-LSTM, LF-LSTM, TFN, LMF, and

MARN increase the MAE after 5 epochs (see Figure 6). A possible ex-

planation for this might be due to overfitting since MOSEI is a large dataset.

MulT and RAVEN show a pretty destabilized MAE at training. Despite

RAVEN being among the most robust approaches on MOSEI in terms of bi-

nary accuracy, it achieves the highest MAE among all approaches (see Figure

6). Finally, we empirically find that MMUU-BE converges faster to better

results attaining the lowest MAE.

For IEMOCAP, most of the approaches increase the cross-entropy loss

after the 5th epoch (see Figure 7). Only RAVEN and MulT attain a low and

stabilized cross-entropy loss. Specifically, MulT, reporting the best recall

performance for the “Neutral” class, attains the lowest cross-entropy loss.

EF-LSTM, achieving an improved performance as compared to other complex
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Figure 5: Validation set convergence across the SOTA approaches on MOSI task

competitive approaches, shows a fair and stabilized loss at training until 25th

epoch.

We investigate the complexity of models by presenting the number of pa-

rameters and training time in minutes for MOSI, MOSEI, and IEMOCAP

in Table 5. We observe that approaches integrating LSTMCell components,

such as LF-LSTM, MARN, and RMFN, are not able to speedup. For LSTM-

Cell, being a variant of LSTM, Pytorch can not currently maintain the same

speed. Despite the low performance, tensor-based approaches attain signifi-

cant speedup during inference. For MOSI, MMUU-BA is faster than RAVEN,

even though the latter has fewer parameters. We attribute this slowdown
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Figure 6: Validation set convergence across the SOTA approaches on MOSEI task

to the LSTMCell component of RAVEN. MulT, being a more complicated

model, requires a longer time (i.e., 17.6 minutes) compared to MMUU-BA

and RAVEN (i.e., 0.64 and 3.71 minutes respectively). We observed simi-

lar behaviour for MOSEI. Even though MOSEI is a relatively large dataset

compared to MOSI, some models have fewer parameters on MOSEI com-

pared to MOSI. A possible explanation for this might be because of seting

up different configuration settings after the fine-tuning process. For IEMO-

CAP, EF-LSTM is not only effective but also an efficient approach attaining

a significant (26 times) speedup over its counterpart (i.e., MulT) in terms of

performance.
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Figure 7: Validation set convergence across the SOTA approaches on IEMOCAP task

4.3. Ablation studies

To address the third research question, we design various ablation studies

to analyse a) the importance of modalities and b) important components for

learning crossmodal interactions. We conduct all ablation studies on MOSI.

4.3.1. Importance of modalities

To understand the importance of modalities in multimodal tasks, we con-

duct ablation studies on TFN, which inherently models unimodal, bimodal,

and trimodal interactions, and MulT, which attains high accuracy both on

sentiment analysis and emotion recognition tasks. For TFN, we test the
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Table 5: Complexity of models. Training time and learning parameters on MOSI, MOSEI,

and IEMOCAP tasks

MOSI MOSEI IEMOCAP

Approach Mins. Params. Mins. Params. Mins. Params.

EF-LSTM [40] 0.43 177,329 6.59 217,457 1.40 206,152

LF-LSTM [40] 3.14 1,155,109 54.47 5,111,485 3.59 946,756

RMFN [10] 57.42 1,950,805 - - 20.85 1,732,884

TFN [42] 0.51 14,707,911 1.87 6,804,859 0.53 23,198,398

LMF [43] 0.43 1,144,493 2.00 5,079,473 1.12 962,116

MARN [59] 69.5 1,350,389 268.20 5,442,313 4.6 1,362,116

MulT [9] 17.6 1,071,211 31.20 874,651 36.89 1,074,998

MMUU-BA [10] 0.64 2,424,965 7.07 2,576,165 0.79 2,605,484

RAVEN [47] 3.71 171,433 23.87 159,213 3.00 173,680

MFN [13] 1.88 1,513,221 18.56 415,521 5.13 1,325,508

MCTN [14] 15.64 147,100 - - - -

TFN approach with unimodal, bimodal, and trimodal subtensors. Table 6

shows the results of ablation studies. We observed that language is the most

informative modality being a pivot for visual and acoustic modalities. The

unimodal visual, acoustic subnetworks and the bimodal visual-acoustic sub-

network attain a pretty low accuracy compared to those ones integrating the

linguistic modality. Specifically, combining language with visual or acous-

tic is generally better than combining the visual and acoustic modalities.

In contrast to [42], we found that the language-based subnetwork performs

similarly to the trimodal tensor network in terms of the binary accuracy.
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That is, our experiments showed that tensor-based fusion is not an effective

approach for modelling crossmodal interaction across three modalities.

Table 6: Comparison of TFN with its subtensor variants on MOSI.

Variant Acc7 Acc2 F1 MAE Corr

TFNl 31.3 75.7 75.6 1.017 0.756

TFNv 17.3 53.2 50.5 1.465 0.125

TFNa 15.2 56.6 54.4 1.425 0.181

TFNl,v 30.3 75.1 75.0 1.013 0.610

TFNl,a 31.1 75.9 75.9 1.012 0.624

TFNv,a 15.4 56.9 55.5 1.414 0.178

TFNw/oc 35.7 75.1 74.9 1.024 0.605

TFNl,v,a [42] 34.9 75.6 75.5 1.009 0.605

For MulT, we first consider the performance for linguistic, visual, acous-

tic only transformers. We found a binary accuracy of 79.5% of the language

transformer compared to 77.4% in literature [9]. The language transformer

significantly outperforms the visual- and acoustic-only transformers (see Ta-

ble 7).

We also study the importance of individual crossmodal transformers ac-

cording to the target modality (i.e., L, V → A, V,A → L, and L,A → V ).

Among the three crossmodal transformers, the one where acoustic is the tar-

get modality works best. This result is consistent with [14], but in contrast

with [9], reporting that presenting language as a target modality leads to

best performance. The experiments show that there is no need to consider

multiple directional pairwise crossmodal transformers. Specifically, when we
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consider acoustic as a target modality yields an increased accuracy of 79.6%

compared to 78.7% of MulT. Though, there is no any statistical difference

in performance among the three crossmodal transformers and the multiple

directional pairwise crossmodal transformer (i.e., MulT).

Table 7: Comparison of MulT with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

MulTl 34.3 79.5 79.2 0.939 0.662

MulTv 20.9 59.7 58.3 1.401 0.154

MulTa 18.75 60.5 60.1 1.348 0.211

MulTv,a→l 31.3 76.7 76.5 1.037 0.604

MulTl,a→v 32.6 78.9 78.7 0.993 0.787

MulTl,v→a 33.6 79.6 79.4 0.996 0.663

MulTH5 31.9 79.0 78.8 1.014 0.662

MulTH10 33.5 79.0 79.0 0.995 0.667

MulT [9] 33.6 78.7 78.4 0.964 0.662

4.3.2. Important Modules for Crossmodal Interactions

To understand the influence of individual components for modelling cross-

modal interactions, we perform comprehensive ablation analysis over the

SOTA approaches on MOSI. First, we study the importance of extra di-

mensions with value 1 of TFNl,v,a [42], which models unimodal and bimodal

dynamics, besides trimodal ones. We found that the TFN version without

constant (TFNw/oc in Table 6) reports a decreased accuracy of 75.1% com-

pared to 75.6% of TFN. Though, for Acc7, the model improves from 34.9%

to 35.7% when comparing TFNl,v,a to TFNw/oc.
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For MulT, we consider the number of heads in crossmodal attention mod-

ule. We experiment with 5 and 10 heads (MulTH5 and MulTH10 in Table 7

respectively). We did not observe any difference in terms of binary accuracy.

Though, for Acc7, the more heads yield an increased performance of 33.5%

compared to 31.9% (see Table 7).

In [59], authors claim that for each timestamp, there might exist multi-

ple crossmodal interactions. We experiment with three variants of MARN

to investigate the number of attentions needed to extract all crossmodal dy-

namics. Specifically, we try one, five, and ten attentions. In contrast to

[59], our experiments show that the MARN with only one attention slightly

outperforms the models with multiple attentions in terms of binary accuracy

(see Table 8). Yet, the MARN with five attentions outperforms the other

two variants, for Acc7. We also remove the multi-attention block (MAB)

from MARN. Specifically, we replace the MAB with a fully-connected layer

and remove the softmax function. We observe that there is no any effect on

binary accuracy (see Table 8) whilst for Acc7, the difference is marginal.

Table 8: Comparison of MARN with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

MARNK=1 30.9 76.9 76.7 0.983 0.629

MARNK=5 31.5 76.1 76.0 1.001 0.616

MARNK=10 30.9 76.4 76.2 1.012 0.621

MARNw/oMAB 32.4 76.4 76.2 0.979 0.622

MARN [59] 31.8 76.4 76.2 0.984 0.625

For MMUU-BA, we analyze the attention module to understand its learn-
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ing behaviour. We experiment with two other variants of MMUU-BA (see

Table 9). The architecture of these variants differs with respect to the

attention computation module. Particularly, in MMUU-UA, we compute

one-directional attention, e.g., from linguistic to visual modality only. In

MMUU-SA, we only compute self-attention within modalities. We found

that one-directional attention results in an increased binary accuracy of

78.8% compared to 78.2% of the proposed framework. Both MMUU-UA

and MMUU-BA attain the same performance, for Acc7 (see Table 9). For

the self-attention approach, we found that it is less effective than the one-

directional crossmodal attention, but more effective than the bi-directional

crossmodal attention.

Table 9: Comparison of MMUU with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

MMUU-UA 33.8 78.8 78.6 0.925 0.680

MMUU-SA 32.0 78.6 78.5 0.950 0.688

MMUU-BA [10] 33.8 78.2 78.1 0.947 0.675

For MFN, first, we investigate if crossmodal interactions can happen over

multiple time instances. Specifically, we experiment with a variant of MFN

by shrinking the context from time t and t−1 to only the current timestamp

t in the memory component. We found that MFNw/o∆ (see Table 10) signif-

icantly underperforms the MFN approach. This implies that we should not

model crossmodal interactions on aligned time steps, but consider long-range

crossmodal contingencies across a multimodal sequence. Second, we evalu-

ate the importance of spatial-temporal crossmodal interactions through time
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by removing all memory components. The results show the effectiveness of

memory components on the proposed approach. Both outcomes agree with

the reported experiments in [13].

Table 10: Comparison of MFN with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

MFNw/o∆ 31.5 73.8 73.8 1.042 0.584

MFNw/oMemory 31.6 75.0 74.8 1.011 0.598

MFN [13] 31.9 76.2 75.8 0.988 0.662

For RAVEN, we have already removed the Nonverbal Subnetworks [47] as

mentioned in 3.5 Section. This modification results in an increased binary ac-

curacy of 78.6% compared to 78.0% in [47] on MOSI. We also investigate the

temporal interactions between the nonverbal ”subword” units with language

utterances. Specifically, we remove the shift component, which learns to dy-

namically shift the text representation by integrating the nonverbal vector.

Practically, visual and acoustic representations are concatenated with the

word embeddings before being fed to downstream networks. We found that

integrating the nonverbal context with words is beneficial for understanding

human language. Specifically, Raven shows a significantly increased binary

performance of 78.6% compared to 75.6% of RAVENw/oShift.

For RMFN, decomposing the fusion problem into multiple stages, we

experiment with the number of stages needed for modelling crossmodal dy-

namics. Specifically, we experiment with one, three, and six stages. Our

experiments show that RMFN attains a similar performance even we apply

one or six stages for fusing information.
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Table 11: Comparison of RAVEN with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

RAVENw/oShift 31.8 75.6 75.5 1.016 0.615

RAVEN [47] 34.6 78.6 78.6 0.948 0.674

Table 12: Comparison of RMFN with other variants of it.

Variant Acc7 Acc2 F1 MAE Corr

RMFNs=1 32.9 75.3 75.2 0.982 0.616

RMFNs=3 32.5 75.5 75.3 0.991 0.623

RMFNs=6 33.1 75.6 75.5 0.991 0.613

RMFN[10] 31.7 75.2 75.1 1.005 0.612

Overall, we found that linguistic modality is a pivot for visual and acoustic

modalities. This basic finding is consistent with literature. Yet, the results

from ablation studies are not always following findings reported in literature.

In particular, we found that:

• fusing multimodal information into multiple levels (e.g., MulT, MARN,

and RMFN) does not necessarily result in better binary performance.

In some cases, fusing information into multiple levels might achieve

slightly better fine-grained accuracy, that is, Acc7;

• tensor-based approaches underperforms the linguistic modality;

• integrating the temporal (e.g., MFN) or modality (e.g., RAVEN) con-

text over the multimodal fusion process results in a significantly better

performance.
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5. Discussion

In this paper, we replicate the most recent SOTA models for multimodal

language analysis. We evaluate their effectiveness through comprehensive

comparative studies, error analyses and series of ablation studies. The effi-

ciency of the models is also compared in terms of three evaluation metrics,

namely, parameters, training time, and validation set convergence. The re-

sults associated with ablation studies help us find out which components and

methodologies contribute most to solve the problem of affective computing.

In terms of effectiveness, the experiments showed that approaches ex-

ploiting attention mechanism components improve the model performance

for both sentiment analysis and emotion recondition tasks. We speculate

that this is because the attention mechanism acts as an implicit multimodal

alignment component. Memory networks reached a similar performance as

well. On the other side, despite tensor-based approaches got a lower present

error for the negative sentiment class on MOSI, in general, they did not

attain high performance. Similarly, recurrent cell-based approaches do not

achieve a high performance either. Overall, most of the SOTA approaches

attain lower performance in a range of 2% to 4.5% compared to the reported

one in the literature. We mainly attribute such discrepancies to the fine-

tuning process. The different versions of MOSEI and MOSI datasets used in

published works could be another reason for most of those cases.

From the efficiency viewpoint, attention mechanism-based approaches are

usually more complex and require more training time as compared to the rest

of modality fusion approaches. To alleviate that issue, we could consider less

fine-grained crossmodal interactions. Indeed, ablation studies showed that
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adding more levels of interactions across modalities results in a decreased

performance. Recurrent cell-based approaches are extremely computation-

ally expensive. On the other side, memory and tensor networks are more

efficient.

Overall, our results demonstrate that attention mechanisms are the most

effective component for affective computing tasks despite being computa-

tionally expensive. Crucially, our ablation studies showed that crossmodal

interactions are not aligned on corresponding time steps, but spread across a

multimodal sequence. Though, little effort has been devoted towards this di-

rection. A further study in this direction would be to investigate approaches

which exploit crossmodal interactions across a multimodal sequence instead

of corresponding timestamps. Finally, multimodal sentiment analysis can

benefit from the integration of context. In the future, it would be worth

investigating how multimodal sentiment analysis could be enhanced by con-

sidering proceeding utterances and existing knowledge bases, which might

entail sentiment or emotional knowledge.

One limitation of our study is that we use a simple approach to align

modalities. Following previous work, we average visual and acoustic modal-

ities throughout word intervals since advancing the SOTA is not the aim of

this work. Yet, further investigation is needed in this direction to find out if

other alignment approaches could enhance the relatively poor performance

of the non-verbal modalities. In term of the implementation, we noticed that

the LSTMCell component cannot speed up. That made approaches which

primely utilize recurrent cell components less efficient.
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6. Conclusion

We have replicated and proposed a large-scale empirical comparison among

SOTA approaches for multimodal human language analysis. We thoroughly

investigated both their effectiveness and efficiency on two human multimodal

affection recognition tasks and found out important components in mul-

timodal language models. The results showed that attention mechanism

approaches are the most effective for both sentiment analysis and emotion

recognition tasks, even though they are not computationally cheap. Besides,

components being able to capture crossmodal interactions across different

timestamps, integrate context and utilize linguistic modality as a pivot for

the non-verbal ones achieved improved performance. It is worth mention-

ing that positive sentiment utterances are the most challenging cases for all

modality fusion approaches. To our knowledge, this is a novel finding. In

the future, we are going to focus on conversational video sentiment analy-

sis tasks in that the utterance context has been proved to be beneficial for

understanding human language.
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Appendices

A. Fine-tuning Final Settings

Table 13: Hyperparameters of EF-LSTM we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 64 64 16

Initial Learning Rate 0.002 0.002 0.001

LSTM Output 96 128 128

Multimodal Embedding Dimension 64 128 16

Multimodal Embedding Dropout 0.1 0.2 0.1

Gradient Glip 0.4 0.8 0.3

Table 14: Hyperparameters of LF-LSTM we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 64 16 16

Initial Learning Rate 0.005 0.001 0.001

LSTM Outputs 128,16,80 128,64,16 128,64,16

Multimodal Embedding Dimension 32 48 32

Multimodal Embedding Dropout 0.2 0.4 0.2

Gradient Glip 0.4 0.3 0.7
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Table 15: Hyperparameters of TFN we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 96 128 128

Initial Learning Rate 0.001 0.002 0.001

Subnetwork Outputs 128,80,80 128,16,32 128,80,60

Subnetwork Dropout Probabilities 0.1,0.1,0.1 0.2,0.2,0.2 0.5,0.5,0.5

Sentiment Subnetwork Outpout 16 96 128

Sentiment Subnetwork Probability 0.4 0.3 0.4

Gradient Glip 0.1 0.1 0.5

Table 16: Hyperparameters of LMF we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 96 128 32

Initial Learning Rate 0.001 0.002 0.001

Rank 4 4 16

Subnetwork Outputs 128,32,80 128,64,32 128,64,32

Subnetwork Dropout Probabilities 0.5,0.5,0.5 0.1,0.1,0.1 0.3,0.3,0.3

Crossmodal Representation 0.2 0.2 0.4

Gradient Glip 0.2 0.2 0.4
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Table 17: Hyperparameters of MARN we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 128 16 64

Initial Learning Rate 0.001 0.002 0.001

LSTM Outputs 128,64,80 128,80,80 128,80,32

Attention Blocks 2 2 5

Attention Cell 16 64 32

Compressed dimension 64,32,8 64,40,40 64,16,8

Output cell dimension 16 16 96

Gradient Glip 0.1 0.2 0.7

Table 18: Hyperparameters of MFN we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 128 128 32

Initial Learning Rate 0.001 0.002 0.005

LSTM Outputs 128,80,16 128,80,16 128,64,16

γ1, γ2 cell dimensions 128,128 128,128 64,32

Attention cell dimensions 64,32 64,32 256,32

Memory dimension 256 256 256

Output cell dimension 64 64 128

Gradient Glip 0.2 0.2 0.7
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Table 19: Hyperparameters of MulT we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 16 128 32

Initial Learning Rate 0.001 0.002 0.005

Transformers Hidden Unit Size 40 40 40

Crossmodal Blocks 4 4 4

Crossmodal Attention Heads 8 10 10

Temporal Convolution Kernel Size 3/3/3 3/3/3 3/3/5

Textual Embedding Dropout 0.3 0.2 0.3

Crossmodal Attention Block Dropout 0.1 0.2 0.25

Output Dropout 0.1 0.1 0.1

Gradient Glip 0.2 0.2 0.7

Table 20: Hyperparameters of MMUU-BA we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 64 64 64

Initial Learning Rate 0.005 0.002 0.001

RNN dropouts 0.15,0.15,0.15 0.1,0.1,0.1 0.7,0.7,0.7

GRU dropouts 0.1,0.1,0.1 0.3,0.3,0.3 0.15,0.15,0.15

FC dropouts 0.15,0.15,0.15 0.8,0.8,0.8 0.15,0.15,0.15

Output cell dimensions 32 32 64

Output dropout 0.15 0.3 0.1

Gradient Glip 0.3 0.9 0.5
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Table 21: Hyperparameters of RMFN we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 64 128 16

Initial Learning Rate 0.005 0.002 0.002

Shift Weight 0.8 0.7 0.1

LSTM layers 3 1 1

Cell Output 50 40 30

Gradient Glip 0.7 1 0.1

Table 22: Hyperparameters of RMFN we use for the various tasks.

MOSI MOSEI IEMOCAP

Batch Size 64 128 16

Initial Learning Rate 0.005 0.002 0.002

Shift Weight 0.8 0.7 0.1

LSTM layers 3 1 1

Cell Output 50 40 30

Gradient Glip 0.7 1 0.1
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