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Abstract

We provide a novel perspective on conversational emotion
recognition by drawing an analogy between the task and a
complete span of quantum measurement. We characterize dif-
ferent steps of quantum measurement in the process of recog-
nizing speakers’ emotions in conversation, and stitch them up
with a quantum-like neural network. The quantum-like lay-
ers are implemented by complex-valued operations to ensure
an authentic adoption of quantum concepts, which naturally
enables conversational context modeling and multimodal fu-
sion. We borrow an existing algorithm to learn the complex-
valued network weights, so that the quantum-like procedure
is conducted in a data-driven manner. Our model is com-
parable to state-of-the-art approaches on two benchmarking
datasets, and provide a quantum view to understand conver-
sational emotion recognition.

Introduction
Multimodal conversational emotion recognition is a new but
rapid-growing area. The task is to classify each utterance in
a conversation into one of the candidate emotions based on
clues from multimodal channels. A speaker’s emotion is ex-
pressed not only by words, but also from his facial emotions
and speech voices. The recognition of emotion in a conver-
sation hence requires a joint analysis of multimodal data
including textual, visual and acoustic modalities. Figure 1
is an example of a multimodal conversation between three
speakers (parties), Joey, Monica and Phoebe. The emotions
of all speakers dramatically change in the course of conver-
sation. Hence, we are facing with a challenge of automati-
cally tracking the emotion evolution.

Existing works have mainly managed to model two lev-
els of interaction. On the one hand, unimodal features are
merged into a joint multimodal utterance representation,
in which interactions between different modalities are cap-
tured (i.e. multimodal fusion) (Liang et al. 2018; Zadeh
et al. 2018a; Tsai et al. 2019a; Zadeh et al. 2017; Zhang
et al. 2020). On the other hand, the speakers’ interactions
in a conversation are captured based on RNN-based back-
bone structures (i.e. conversational context modeling) (Poria
et al. 2017; Hazarika et al. 2018a,b; Ghosal et al. 2019; Ma-
jumder et al. 2019; Zhang et al. 2020). However, few works
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Figure 1: An example of a multimodal conversation. The
task is to predict the emotion of each utterance.

have joined multimodal fusion and conversational context
modeling in a unified architecture. Most multimodal fusion
works are evaluated on monologue data with no conversa-
tional structure involved. For conversational context mod-
eling, however, simple concatenation or attention mecha-
nism is employed to join pre-trained unimodal utterance
features. Another issue facing both aspects of research is
a lack of formal understanding of the constructed model,
which is mainly composed of black-box-like neural compo-
nents (Baltrušaitis, Ahuja, and Morency 2017).

We design a quantum-like framework to approach conver-
sational emotion recognition, which tackles both limitations
in one shot. The motivation stems theoretical investigations
of quantum cognition (Busemeyer and Bruza 2012), which
suggest that quantum-inspired frameworks can properly ex-
plain phenomena in human cognition that violate the prob-
ability theory that grounds almost all classical models. As a
typical cognitive concept, emotion recognition has received
little attention from a quantum viewpoint. We therefore seek
to explore the use of quantum-like procedure to model emo-
tion recognition.

We draw an analogy between the process of quantum
measurement and the emotion recognition. In a quantum
physics experiment, a particle is in a mixture of multiple mu-
tually independent pure states prior to measurement, and the
measurement makes it collapse onto a single pure measure-
ment state. Likewise, a speaker is in an ambiguous state of



multiple independent emotions, and the conversational con-
text serves as a measurement that causes the emotion state
to collapse onto the a pure state. Moreover, the evolution of
quantum states over time is analogous to the evolution of a
speaker’s emotion state in the course of conversation.

This analogy stimulates us to contrive the procedure of a
quantum measurement experiment for conversational emo-
tion recognition (Ringbauer 2017). As complex values are
key to instrument quantum concepts, we build a complex-
valued neural network to implement this measurement pro-
cedure. In addition, a dedicated optimizer (Wisdom et al.
2016) is employed to update the complex-valued unitary
matrices manifested in the representation of quantum con-
cepts, so that the whole model can be trained end-to-end
with standard back-propagation algorithms. This allows us
to determine the specifications of the pre-designed quantum-
like process in a data-driven manner.

We evaluate our framework on two benchmarking conver-
sational emotion recognition datasets, namely MELD (Poria
et al. 2019a) and IEMOCAP (Busso et al. 2008a). The re-
sults show that the provided formal quantum view of con-
versational emotion recognition does not lead to the drop in
performance: our model achieves comparable accuracy per-
formances to state-of-the-art models on both datasets, with
slightly improved values on particular metrics. Moreover,
the introduced training algorithm for unitary matrix brings
to affordable drop in efficiency.

Our contributions are as follows:

• We take a novel quantum perspective on conversational
emotion recognition.

• We build a unified framework to simultaneously conduct
multimodal fusion and conversational context modeling.

• We design a set of complex-valued network layers to im-
plement the quantum concepts, involving unitary matri-
ces. We manage to make the neural network end-to-end
trainable.

• We conduct a comprehensive and fair comparison with
existing models, and our model achieves comparable per-
formances to the state-of-the-art model.

Preliminaries on Quantum Theory
Quantum physics (QT) provides a mathematical interpreta-
tion of the microscopic world such as electrons and pho-
tons. The mathematical formalism of quantum physics is
defined on a Hilbert Space H, which is an inner product
space over the complex field. We employ the widely-used
Dirac Notations for a mathematical representation of quan-
tum concepts. A complex-valued unit vector ~µ and its con-
jugate transpose ~µH are denoted as a ket |u〉 and a bra 〈u|
respectively. 1

State
The state of an isolated quantum system is called a quan-
tum state, such as the position or momentum of an electron.

1Hence The inner and outer product of two unit vectors |u〉 and
|v〉 are 〈u|v〉 and |u〉 〈v| respectively.

If the system composed solely of a single particle, its state
is then a pure state |φ〉, which is a unit complex vector on
H. In particular, when the pure state falls onto a basis of
the Hilbert Space, it is called a basis state. Otherwise, it is
a superposition of the basis states |0〉 and |1〉 and called a
superposition state.

When the quantum system is composed of multiple par-
ticles, the overall system state is a statistic mixture of in-
dividual particle states or a mixed state. A mixed state is
mathematically a density matrix, which is a positive semi-
definite square matrix with unit trace. For the set of pure
states {|φj〉}nj=1 with weights {pj}nj=1 that sum up to 1, the
density matrix ρ is computed by ρ =

∑n
i=1 pj |φj〉 〈φj |. It is

worth noting that density matrix can be viewed as a generic
state representation, since a pure state |φk〉 can be recast to
a density matrix via ρ = |φk〉 〈φk|.

A Complete Procedure of Measurement
Experiment
Measurement is the process of measuring the physical prop-
erty of a system. A complete span of quantum measurement
in a lab experiment contains state preparation, evolution,
measurement and collapse. Below are brief introductions of
all steps. For details, please refer to Chapter 2 in (Ringbauer
2017).

Preparation State preparation is literally the process of
preparing the quantum system. After this process, the state
ρ of the system to be measured is obtained.

Evolution The prepared system does not remain un-
changed, but undertakes a complicated evolution process
over time before the measurement. The evolution can be
mathematically formulated as a Unitary Operator or equiv-
alently a complex unitary matrix U ∈ H, satisfying UUH =
I . 2 The evolution makes the state change to

ρ̂ = UρUH (1)
It is worth noting that result ρ̂ is also a density matrix as

long as the input ρ is a density matrix. So a valid physical
state is produced after the evolution step.

Measurement A measurement is associated to an observ-
able Ô, which is a self-joint square matrix in the Hilbert
Space, i.e. Ô = ÔH . 3 An observable can be eigen-
decomposed into

Ô =
∑
j

λj |λj〉 〈λj | (2)

where the eigenstates {|λj〉} form a complete orthogonal ba-
sis of the Hilbert SpaceHwhile the eigenvalues {λj} are the
possible observed values. For a system ρ, the probability pj
that λj is observed is given by the Born’s rule (Born 1926):

pj = tr(ρ̂ |λj〉 〈λj |) = 〈λj | ρ̂ |λj〉 (3)
2AH is called the Hermitian of matrix A, meaning the conjugate

transpose
3Here a nomenclature rather than a strict definition is used for

understanding purpose. Please refer to (Nielsen and Chuang 2011)
for a strict definition of projection measurement.



the resulting probabilities {pj} form a classical probability
distribution with

∑
pj = 1.

Collapse After measurement, the system is always col-
lapsed onto one pure eigenstate |λk〉 of the observable. If
the measurement can be repeated for infinite times, then at
probability pk (computed by Eq.3) the system collapses onto
state |λk〉.

Related Works
To date, the two most challenging tasks for multimodal con-
versational emotion recognition are multimodal fusion and
context modeling.

Multimodal Fusion
Multimodal fusion approaches are targeted at monologue
data, mainly based on word-aligned multimodal features.
Beyond simple concatenation of features under recurrent
structures, hybrid memories have been constructed by intro-
ducing an additional cell that aggregates the hidden units of
unimodal recurrent structures at a time stamp, and is fed to
the next time stamp as an additional input (Liang et al. 2018;
Zadeh et al. 2018c,a; Bagher Zadeh et al. 2018). Sequence-
to-sequence structures have also been employed to “trans-
late” one modality representation to another for the same
utterance, and take the hidden representation as the joint ut-
terance representation (Pham et al. 2019; Tsai et al. 2019a).
Other models rely on tensor-based approaches to fuse multi-
modal features, considering the natural split in terms of the
modalities (Zadeh et al. 2017; et al. 2018; Barezi and Fung
2019; Liang et al. 2019; Mai, Hu, and Xing 2019) to form
a tensorized representation for a multimodal utterance, fol-
lowed by fully connected network (Zadeh et al. 2017) or ten-
sor decomposition strategies ( et al. 2018; Barezi and Fung
2019) to conduct classification.

The above strategies beat simple feature concatenation by
a huge margin. However, incorporating them into a conver-
sational setting will lead to efficiency issues. Hence, in our
framework a lightweight pre-trained unimodal utterance rep-
resentation is used, followed by a mixture process to con-
struct the state of each utterance.

Conversational Context Modeling
The works on conversational context modeling are tar-
geted for conversational emotion recognition, either in a
textual or multimodal setting. They mainly employ pre-
trained utterance-level unimodal representations and con-
duct simple concatenation or attention to obtain utter-
ance representation. One idea is to build a memory cell
for each speaker in an attempt to achieve speaker-specific
context modeling (Hazarika et al. 2018b,a). However, it
is later argued that memory cell does not well exploit
the speaker information (Baltrušaitis, Ahuja, and Morency
2017). More recent models (Majumder et al. 2019; Ghosal
et al. 2019) replace the memory cell with components to
handle self and inter-speaker emotional influence. In par-
ticular, DialogueRNN (Majumder et al. 2019) builds a hi-
erarchical multi-stage RNN with different strategies for

updating a speaker and a listener’s emotion states. Dia-
logueGCN (Ghosal et al. 2019) captures the relations of all
utterances in a conversation, based on their relative order and
whether they belong to the same speaker. The relations are
reflected in a graph, and a graph neural network is built to
update utterance representations.

Compared to existing works, we introduce quantum-like
mechanisms to capture the conversational context. Basically,
we feed the speaker information into the complex phases of
complex-valued embedding, and model the order of utter-
ances in a Quantum-like RNN (QRNN) component. Before
us, Zhang et al. (Zhang et al. 2019, 2020) model the influ-
ences of speakers in the conversation inspired by weak mea-
surement, leading to performance that beats Dialogue-RNN
but under-performs Dialogue-GCN on textual data. How-
ever, rather than a formal quantum procedure, the model
vaguely borrows detached quantum concepts at different
stages, implemented by real network layers. Moreover, it
involves a separate step to learn the influence matrices be-
tween speakers and hence could not facilitate end-to-end
learning.

Methodology
Problem Definition
The task input is a multimodal conversation S containing
N utterances {uj}Ni=1. Each utterance uj has textual, vi-
sual and acoustic representations tj , vj , aj , and uttered by
party pj . Suppose there are a total number of K parties in
the whole dataset, then pj ∈ {1, 2, ...,K}. The task requires
one to predict the emotion ej for each utterance uj within a
finite set of emotions E.

Unimodal Feature Extraction
We build different neural network structures to extract tex-
tual, visual and acoustic features respectively. For textual
features, CNN (Kim 2014) is employed to extract textual
features from the transcripts, with a 300-dim Glove vec-
tor (Pennington, Socher, and Manning 2014) for each word.
3D-CNN (Ji et al. 2013) and openSMILE (Eyben et al. 2010)
are utilized to extract the features respectively. Please refer
to (Hazarika et al. 2018b) for details of the network struc-
tures.

Quantum-inspired Neural Network for Emotion
Recognition in Conversation
Figure 3 shows our model for conversational emotion recog-
nition, termed as Quantum Measurement-inspired Neural
Network (QMNN), which consists of four steps, namely
preparation, evolution, measurement and collapse in corre-
spondence to the quantum measurement procedure.

Preparation We prepare the state ρj of each utterance
uj in a conversation. A multimodal fusion is conducted by
means of quantum mixture. As shown in figure 3, the uni-
modal features are recast as pure states, and the utterance is
viewed as a mixture of the unimodal states.

For the construction of unimodal pure states, we consider
the phase-amplitude or polar decomposition of a complex



Figure 2: Diagram of the proposed network. Each utterance
uj is a represented by density matrix ρj . The evolution step
is a Quantum-like RNN. Post-evolution states {ρcj} are fed
into the measurement controlled by observable O. The emo-
tions with the largest likelihood {ej} are produced.

Figure 3: Diagram of preparation. Unimodal states
|aj〉 , |tj〉 , |vj〉 are constructed and mixed to produce the
multimodal mixed state ρj .

value z as z = reiθ, where amplitude r is a non-negative
value, phase θ is a real value in [0, 2π), and i is the imaginary
number with i2 = −1. A pure state |ψ〉 can generally be
expressed as

|ψ〉 = [r1e
iθ1 , ..., rde

iθd ]

= [r1, ..., rd]� ei[θ1,...,θd] (4)

Where � refers to element-wise vector product. The am-
plitudes R = [r1, ..., rd] forms a real unit vector, while
the phases Θ = [θ1, ..., θd] are real vectors with all ele-
ments in [0, 2π]. They are constructed respectively in the
formation of unimodal pure states. Suppose the input fea-
tures are ai ∈ Rda , vi ∈ Rdv , ti ∈ Rdt for acoustic, vi-
sual and textual modalities for utterance ui. The features
are first projected to the same d-dimensional multimodal
Hilbert Space Hmm by a single fully connected layer with
Rectified Linear Unit (ReLU) as the activation function:
m̂j = ReLU(Wmmj + bm),m ∈ {a, v, t}. Then the d-
dimensional vectors are normalized to produce unimodal

pure states: Rmj =
m̂j

||m̂j ||2 ,m ∈ {a, v, t}. The ReLU func-
tion ensures all elements of the normalized vector are non-
negative, and the normalized vector can be taken as ampli-
tudes of a pure state.

The phase assignment is motivated by the prior work of
encoding position in complex word embeddings (Wang et al.
2019b), which demonstrates that complex embedding with
periodic phases is one and the only that preserves the rela-
tive word distance. Likewise, we encode utterance order and
speaker information in the phases. The phase vector for the
j-th utterance is calculated by Θj = Wpj j + Ψpj , where
Wpj ∈ Rd is the frequency of speaker pj and Ψpj ∈ Rd
are speaker-dependent initial phases with all elements in
[−π, π]. For each modality, K different d-dimensional fre-
quency and initial phase vectors are learned from the data.
We expect them to capture certain speaker-dependent fea-
tures such as utterance frequency or emotion tendency in
each modality.

Based on the phase encoding Θ
(a)
j ,Θ

(v)
j ,Θ

(t)
j , the uni-

modal states are constructed by |mj〉 = Rmj � eiΘ
(m)
j ,m ∈

{a, v, t}. A mixture process is then in place to fuse the uni-
modal pure states.

ρj = λa |aj〉 〈aj |+ λv |vj〉 〈vj |+ λt |tj〉 〈tj | (5)

where λa, λv, λt are non-negative values that sum
up to 1. We take the lengths of the projected vec-
tors to compute the mixture weights: λa, λv, λt =
softmax(||âj ||2, ||v̂j ||2, ||t̂j ||2). This is because the length
of the vector is thrown away in the construction of pure
states, but it may still contain useful information to the
task. In addition, then length of the vector is analogous to
the quantities of particles and somehow reflects the mixture
weights.

The construction of utterance state naturally entails mul-
timodal fusion and encodes speaker information. During
training, different mixture weights are produced for differ-
ent utterances in a conversation, formulating the evolving
influences of each modalities to the final emotion. Encoding
speaker information in the phases allows for a complicated
non-linear interaction between the speaker features and the
multimodal features. The utterance representation gives rise
to a latent speaker interaction in the subsequent network ar-
chitectures.

Evolution In the conversational emotion recognition task,
the emotions of speakers are evolving throughout the con-
versation. Hence it is intuitive to employ quantum evolution
to track the dynamics of emotional states in a conversation.

The building block of the evolution step is a quantum-like
recurrent neural network (QRNN). The inputs of a QRNN is
a sequence of quantum states represented by density matri-
ces ρ1

x, ..., ρ
N
x with N being the sequence length. A hidden

density matrix ρh is introduced to memorize the sequential
information. Its value ρth at time t is iteratively updated by

ρth = λUhρ
t−1
h U∗h + (1− λ)Uxρ

t
x.U
∗
x , t = 1, ..., N (6)



It is easy to check that the result matrix ρth is still a le-
gal density matrix. With initial value of density matrix ρ0

h
being a random diagonal matrix with unit trace, Ux, Uh are
complex-valued unitary matrices, and λ ∈ [0, 1]. From a
quantum language, the process means the state of the con-
text is evolving over time, and mixing with the input state at
each time stamp.

Similar to classical RNN with ht = f(xt, ht−1), we
also have ρth = f(ρtx, ρ

t−1
h ) where the updating function

f(·) is parameterized by unitary matrices Ux, Uh and real
value λ. We posit that QRNN is potentially superior to
RNN. A density matrix characterizes a probability mea-
sure on the Hilbert Space by defining a probability value
to every pure state. This allows QRNN to better render the
uncertainties in the conversational context with its hidden
unit. Under this view, the hidden unit of a classical RNN
can be seen as a pure state collapsing from the probabil-
ity measure, with uncertainties removed. Moreover, the uni-
tary transformation ensure zero information loss, since uni-
tary transformation is an entropy-preserving operation, i.e.
S(ρ) = S(UρU∗),∀UU∗ = I 4. This means QRNN has a
strong potential in memorizing the context information. In
comparison, there is always information loss in a classical
RNN in the step of multiplying by the weight matrix.

Since the inputs and outputs are density matrices, QRNN
could be stacked on top of one another to better capture the
conversational context. The output of layer l is generated
by the QRNN with its previous layer as input, i.e. {ρtl} =
QRNN({ρtl−1}). In this work, however, we only use one
layer of QRNN to construct the quantum-like contextual rep-
resentation {ρtc}. The exploitation of multi-layered QRNN
is left for future work.

Figure 4: Diagram of the Quantum-like Recurrent Neural
Network. With initial value ρh0 , the hidden density matrix ρht
for each time stamp t is iteratively produced by Eq. 6.

Measurement and Collapse After evolution, a sequence
of d-dimensional states {ρct} are obtained. A global observ-
able O is introduced to measure the emotional state of each
utterance. In the d-dimensional Hilbert Space, the observ-
able includes d mutually orthogonal eigenstates, forming a
d-dimensional unitary matrix M , and their corresponding
eigenvalues. After the measurement, a d-dimensional prob-
ability distribution is calculated, denoting the likelihood the
state collapses onto the corresponding eigenstates.

4Please check (Nielsen and Chuang 2011) for the definition of
Entropy for a density matrix

Since d is often not the number of emotions in the task,
the eigenstates could not be explicitly interpreted as emo-
tional states. Instead, each emotion correspond to a high-
dimensional subspace in the Hilbert Space Hmm spanned
by the eigenstates. To simulate the process of exploring the
subspaces, we map the probability distribution to emotion
label with a neural network with one hidden layer.

Network Training
The network is trained in an end-to-end fashion. Training
a quantum-inspired complex-valued network has been dis-
cussed in (Li, Wang, and Melucci 2019). However, unitary
matrices are present in the QRNN and measurement layers.
It is a challenge to satisfy the unitary constraint throughout
the training process. For training of unitary matrix, we fol-
low the Riemannian approach proposed in (Wisdom et al.
2016), which computes the generic gradient of the matrix
and then projects it to the manifold of all unitary matrices.
The formula to update an unitary matrix X is given by

G =
∂L

∂X
(7)

A = GHX −XHG (8)

X̂ = (I +
lr

2
A)−1(I − lr

2
A)X, (9)

where G is the general gradient, and the learning rate lr
controls to what extent X̂ deviates from X . It can be proved
that (I+ lr

2 A)−1(I− lr
2 A) is always a unitary matrix, so the

update value X̂ is also a unitary matrix. However, the inverse
of a complex matrix (I + lr

2 A)−1 is not directly tractable in
a deep learning toolbox. To tackle this problem, we decom-
pose the complex matrix inverse Z = A + Bi into its real
and imaginary parts:

(A+Bi)−1 = (A+BA−1B)−1−(B+AB−1A)−1i (10)

In this way the inverse of a complex matrix is tractable in
a common deep learning toolbox. We implement the above
procedure as a separate optimizer for unitary parameters.
The unitary parameters are updated separately during train-
ing.

Experiments
Datasets
We evaluate our model on two benchmarking datasets,
IEMOCAP (Busso et al. 2008b) and MELD (Poria et al.
2019b). IEMOCAP contains videos of dyadic conversations
among 10 speakers under diverse scenarios. MELD is a
multi-party conversation dataset crawled from the Friends
TV series. For a fair comparison, we use the publicly
available pre-trained utterance features provided by the au-
thors of DialogueRNN (Majumder et al. 2019), available at
github 5. IEMOCAP has a 100-dim textual feature vector,
a 512-dim visual feature vector and 100-dim acoustic fea-
ture vector for each utterance. MELD has 600-dim textual

5https://github.com/SenticNet/conv-emotion



Dataset # dialogues # utterances
train dev test train dev test

IEMOCAP 96 24 31 6808 1702 1623
MELD 1039 114 280 9989 1109 2610

Table 1: Distribution of training, test and validation sets for
IEMOCAP and MELD.
features and 300-dim acoustic features 6. Table 1 shows the
statistics of utterances and dialogues for both datasets. The
emotion labels for IEMOCAP are Happy, Sad, Neutral, An-
gry, Excited, Frustrated. The emotion labels for MELD are
Fear, Sad, Neutral, Angry, Surprise, Disgust, Joy.

Models
We include a great variety of existing models in the ex-
periment. For monologue models, Memory Fusion Network
(MFN) (Zadeh et al. 2018b) and Multimodal Transformer
(MulT) (Tsai et al. 2019b) are adapted to conversational
context: the word-level inputs in the monologue setting
are changed to input utterance features, and an output is
yielded at each time stamp. For dialogue models, contex-
tual LSTM model (BC-LSTM) (Poria et al. 2017) memory-
based models including CMN (Hazarika et al. 2018b) and
ICON (Hazarika et al. 2018a), and state-of-the-art model
(DialogueRNN) (Majumder et al. 2019) are included. All
these four models concatenate multimodal features at utter-
ance level according to their respective github codes. We ex-
clude DialogueGCN (Ghosal et al. 2019), the latest model
in this field, from the experiment due to its instability under
the multimodal setting.

The main evaluation metrics are the average accuracy and
F1 scores over all emotions. In addition, the precision, recall
and F1 values for each emotion are calculated as a refer-
ence. For a fair comparison, a grid search for the best hyper-
parameters is conducted for all models. At each search the
model is trained for 100 epochs and the model with the low-
est validation loss is chosen. Out of 50 searches, the model
with the highest average F1 score on the test set is taken to
compute the performance values.

On both datasets, the QMNN hyper-parameters
are searched within embedding dimensions d ∈
{100, 120, 140, 160, 180, 200}, the size of last hidden
layer in {32, 48, 64, 80}. Stochastic gradient descent
(SGD) is used as the optimizer with a learning rate
lr ∈ {0.001,0.002,0.005,0.008}. The unitary matrix train-
ing algorithm is also modified to an SGD fashion, where
the general gradient G in eq. 7 is replaced by the SGD
gradient. The learning rate unitary − lr for updating
the unitary matrix varies in {0.001, 0.002, 0.005, 0.008}.
The batch size bs varies in {24, 48, 96} for MELD and
{4, 8, 16} for IEMOCAP in proportion to the dataset
scale. The dropout rate for the last hidden layer varies in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. We set the number
of parties K = 1 for MELD and K = 2 for IEMOCAP.
Since the total number of speakers (actors) is huge (250
in training, 46 in validation, 48 in test), speaker-dependent

6The pre-trained visual feature is not publicly available for
MELD

encoding may suffer from data sparsity issue for MELD.
For the same reason, CMN is removed from the MELD
experiment. IEMOCAP has a male speaker and female
speaker in each conversation, so learning two set of fre-
quencies and initial phases may capture the gender-related
factors that influence the emotion.

The experiments are run on a Linux server with one
NVidia Tesla V100 Graphic card. The codes are written in
PyTorch and have been open sourced on GitHub 7.

Results and discussion
Overall Performance
The experiment results on IEMOCAP and MELD are shown
in Table 2 and 3 respectively 8. The proposed QMNN
achieves the best overall F1 and Accuracy scores on MELD
by a tiny margin, and beats all remaining models but slightly
underperforms DialogueRNN on IEMOCAP. We acknowl-
edge that no significance differences between our model and
existing models are observed, and the results therefore sug-
gest comparable effectiveness to existing models.

The MELD dataset has a relatively large scale and
poses a greater challenge for conversational context mod-
eling, with spoken dialogues with a high number of speak-
ers. The fact that QMNN beats other models on MELD
demonstrates the effectiveness in building the conversa-
tional context. As a dyadic dataset, IEMOCAP is hospitable
to speaker-dependent modeling, since a single listener is
present throughout a conversation. On the MELD dataset
where conversations are conducted among multiple speak-
ers, the update mechanism on the listeners in DialogueRNN
is inadequate to model the emotional shift of each listener in
a discriminative manner.

Ablation Study
To investigate the effect of the introduced quantum compo-
nents, an ablation study is carried out.

To examine the quantum mixture component, we build
QMNN-concat, which computes utterance amplitudes by ap-
plying projection of the concatenation of unimodal features,
and QMNN-realmix that ignores the phase assignment of
the utterance representation. The projection dimension in
QMNN-realmix is doubled to compensate for the reduced
parameters. QRNN is contrasted by a classical GRU, and no
recurrent structure, termed as QRNN-crec and QRNN-norec
respectively. Finally, we consider two variants of our quan-
tum measurement, a semantic measurement (Li, Wang, and
Melucci 2019) (a.k.a QMNN-seamea) with the same number
of eigenstates as QMNN and a fully connected network with
one hidden layer on flattened density matrix (a.k.a QMNN-
flatten). QMNN-seamea has a pre-defined number of eigen-
states that are not necessarily orthogonal to each other, and
hence trained by classical backpropagation algorithm.

Table 4 exhibits a performance drop after each quan-
tum component is replaced by its classical counterparts.

7The source code required for conducting experiments will be
made publicly available upon publication of the paper

8The results on Fear and Disgust are absent from the MELD
table as they are zeros for all models under experiment.



Model Happy Sad Neutral Angry Excited Frustrated Average
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Accuracy F1

BC-LSTM (Poria et al. 2017) 0.3852 0.3264 0.3534 0.7826 0.5878 0.6713 0.5556 0.4818 0.5160 0.5435 0.7353 0.625 0.6701 0.6589 0.6644 0.5522 0.6667 0.6040 0.5866 0.5845
MFN (Zadeh et al. 2018a) 0.4273 0.3264 0.3701 0.7308 0.6204 0.6711 0.5120 0.5547 0.5325 0.6369 0.6294 0.6331 0.6426 0.5652 0.6014 0.5611 0.6745 0.6126 0. 5822 0.5811
MulT (Tsai et al. 2019b) 0.4355 0.375 0.4030 0.7253 0.6898 0.7071 0.5246 0.5260 0.5254 0.6622 0.5765 0.6164 0.6917 0.6154 0.6513 0.5546 0.6798 0.6108 0.5952 0.5947
CMN (Hazarika et al. 2018b) 0.4202 0.3472 0.3802 0.7778 0.5429 0.6394 0.5504 0.5833 0.5664 0.5902 0.6353 0.6119 0.6717 0.5953 0.6312 0.5690 0.7139 0.6333 0.5946 0.5933
ICON (Hazarika et al. 2018a) 0.3790 0.3264 0.3507 0.7558 0.5306 0.6235 0.5089 0.5963 0.5491 0.6273 0.5941 0.6103 0.6289 0.5385 0.5802 0.5565 0.6719 0.6088 0.5693 0.5689
DialogueRNN (Majumder et al. 2019) 0.8636 0.1319 0.2289 0.8190 0.7020 0.76 0.6212 0.4870 0.5460 0.6489 0.5 0.56 0.6406 0.8227 0.7204 0.5287 0.7979 0.6360 0.6242 0.6048
QMNN 0.4135 0.3819 0.3971 0.7286 0.6428 0.6830 0.5411 0.56514 0.5529 0.6538 0.6 0.6258 0.6604 0.6739 0.6671 0.5556 0.7058 0.6219 0.6084 (-2.54%) 0.5988(-1.00%)

Table 2: Performances of models on IEMOCAP. The best performance values among all models are in bold. The relative
difference between QMNN and the best remaining model are presented in the parentheses.

Model Sad Neutral Angry Surprise Joy Average
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Accuracy F1

BC-LSTM (Poria et al. 2017) 0.3208 0.1635 0.2166 0.7313 0.7954 0.7620 0.4236 0.4580 0.4401 0.4509 0.5552 0.4976 0.5107 0.5323 0.5213 0.5980 0.5760
MFN (Zadeh et al. 2018a) 0.2786 0.1875 0.2241 0.7074 0.8392 0.7677 0.4740 0.3971 0.4322 0.5855 0.4021 0.4768 0.4819 0.5970 0.5333 0.6065 0.5779
MulT (Tsai et al. 2019b) 0.3617 0.1635 0.2252 0.7174 0.8185 0.7646 0.4275 0.5130 0.4664 0.4961 0.4555 0.4750 0.5182 0.5299 0.5240 0.6054 0.5794
ICON (Hazarika et al. 2018a) 0.4310 0.1202 0.1880 0.7303 0.8041 0.7654 0.4463 0.3855 0.4137 0.4134 0.6299 0.5064 0.4857 0.5473 0.5146 0.5996 0.5718
DialogueRNN (Majumder et al. 2019) 0.24 0.1154 0.1558 0.7213 0.7747 0.7470 0.3451 0.3955 0.4609 0.4113 0.5694 0.4776 0.5162 0.4751 0.4948 0.5773 0.5558
QMNN 0.2430 0.125 0.1650 0.7123 0.8380 0.7700 0.4286 0.4348 0.4317 0.4581 0.5445 0.4976 0.5348 0.5076 0.5208 0.6081(+0.26%) 0.5800(+0.10%)

Table 3: Performances of models on MELD. The best performance values among all models are in bold. The relative difference
between QMNN and the best remaining model are presented in the parentheses.

Model ACC F1
QMNN 0.6080 0.5800
Preparation
QMNN-concat 0.5904 (-2.89%) 0.5623 (-3.05%)
QMNN-realmix 0.5938 (-2.33%) 0.5716 (-1.45%)
Evolution
QMNN-norec 0.5945(-2.22%) 0.5684 (-2.00%)
QMNN-crec 0.5889 (-3.14%) 0.5686 (-1.97%))
Measurement
QMNN-seamea 0.5938 (-2.34%) 0.5673 (-2.19%)
QMNN-flatten 0.5959 (-1.99%) 0.5700 (-1.72%)

Table 4: Ablation Study on MELD. Values in parentheses
are the relative differences from QMNN

The quantum mixture step effectively fuses multimodal data
and integrates the utterance order, which agrees with the
argument in (Wang et al. 2019b) that order information is
compatible with a phase-amplitude assignment mechanism.
Furthermore, additional conversational contextual informa-
tion is captured by QRNN as it yields a performance gain
over QMNN − norec. The increase over classical QRNN
suggests the superiority in capturing ambiguities with the
density matrix hidden unit. However, a classical explana-
tion of the hidden unit remains an open question. Com-
pared to previous works (Li, Wang, and Melucci 2019; Wang
et al. 2019a), the measurement step can be interpreted as an
authentic quantum measurement with mutually orthogonal
eigenstates, which does not lead to a performance drop.

Efficiency Analysis
To satisfy the numerical constraints for the quantum com-
ponents, a special training algorithm targeting at complex-
valued unitary matrix is introduced (See Section 4.4 for de-
tails). The efficiency bottleneck falls on the matrix inverse
(Eq. 10), which is of the same computational complexity
degree as matrix multiplication (O(n3)−O(n2.373)) 9. The
unitary matrix training is expected to moderately increase
the training time. To examine this argument, we compare
the average training time per batch of two QMNN variants
with no recurrent structures, one with quantum measurement
and the other with semantic measurement, out of 50 batches

9wikipedia.org/wiki/Computational complexity of mathematical operations

of 16 samples. The time difference between the two mod-
els indicates the time cost for unitary matrix training. As a
result, an average of 0.075s time difference per batch is ob-
served, suggesting an affordable efficiency cost produced by
the unitary matrix training.

Summary
The results indicate a comparable performance between
QMNN and state-of-the-art models under experiment. The
ablation study suggests that the designed quantum compo-
nents have effectively addressed both multimodal fusion and
conversational context modeling. The computational cost
brought about by the unitary matrix training algorithm is
also tolerable. To sum up, a preliminary success has been
achieved in applying the formal quantum-inspired frame-
work for conversational emotion recognition.

Conclusions
This work provides a novel quantum view to the conver-
sational emotion recognition problem. A holistic quantum-
inspired network is constructed to fuse multimodal data
and build conversational context, and identify per-utterance
emotion on its basis. The design of the network and the
adoption of unitary matrix training ensures the authenticity
of quantum analogy, which is not at a tremendous sacrifice
of effectiveness or efficiency as illustrated in a comprehen-
sive comparison with state-of-the-art models on two bench-
marking datasets.

Our work suffers from the following limitations. First, fur-
ther investigations need to be conducted on how our model
handles conversations with a huge number of speaker. In ad-
dition, a classical understanding of the designed quantum
components remain an open problem, such as a visualiza-
tion approach for their respective parameters. Last but not
least, The quantum components have a low degree of non-
linearity, which brings harm to the expressive power of the
resulting model. Further investigations should be made on
designing theoretically sound non-linear operations accom-
panying the quantum-like operations.
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