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Abstract

Video sentiment analysis as a decision-making process is in-
herently complex, involving fusion of decisions from multi-
ple modalities and the so-caused cognitive biases. Inspired
by recent advances in the emerging field of quantum cogni-
tion, we show that the sentiment judgment from one modal-
ity could be incompatible with the judgment from another,
i.e., the order matters and they cannot be jointly mea-
sured to produce a final judgment. Thus the cognitive pro-
cess in video sentiment analysis exhibits “quantum-like” bi-
ases that cannot be captured by classic probability theo-
ries. Accordingly, we propose a fundamentally new, quantum
cognitively-motivated fusion framework for predicting sen-
timent judgments. In particular, we formulate utterances as
quantum superposition states of positive and negative sen-
timent judgments, and uni-modal classifiers as mutually in-
compatible observables, on a complex-valued Hilbert space
with positive-operator valued measures. Experiments on two
benchmarking datasets illustrate that our framework signifi-
cantly outperforms various existing decision level and a range
of state-of-the-art content-level fusion approaches. The re-
sults also show that the concept of incompatibility allows ef-
fective handling of all combination patterns including those
extreme cases that are wrongly predicted by all uni-modal
classifiers.

Introduction
Video sentiment analysis is an emerging interdisciplinary
area, bringing together artificial intelligence (AI) and cog-
nitive science. It studies a speaker’s sentiment expressed by
distinct modalities, i.e., linguistic, visual, and acoustic. At its
core, effective modality fusion strategies are in place. Ex-
isting neural structures achieve the state-of-the-art (SOTA)
(Tsai et al. 2019; Wang et al. 2019b; Dumpala et al. 2019;
Zadeh et al. 2017) by integrating features after being ex-
tracted, called feature-level fusion. Other approaches sim-
ulate logic reasoning and human cognitive biases (Morvant,
Habrard, and Ayache 2014; Glodek et al. 2011b,a) by ag-
gregating decisions of uni-modal classifiers into a joint de-
cision, called decision-level fusion. Additionally, hybrid fu-
sion approaches benefit from the advantages of both strate-
gies. In this paper, we target at the generally less effective
but more flexible decision-level fusion.
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Video sentiment analysis is inherently a complex hu-
man cognition process. Recent research in cognitive science
found that in some cases human decision making could be
highly irrational (Tversky and Kahneman 1983), and such
behaviour does not always obey the classical (Kolmogorov)
axioms of probability (Kolmogorov 1950) and utility theory
(Morgenstern 1949). On the other hand, preliminary work
show that the mathematical formalism of Quantum Me-
chanics (QM) can successfully address paradoxes of classi-
cal probability theory in modelling human cognition (Buse-
meyer and Bruza 2012). Conceptually, quantum cognition
challenges the notion that user’s cognitive states underpin-
ning the decisions have pre-defined values and that a mea-
surement merely records them. Instead, the cognitive system
is fundamentally uncertain and in an indefinite state. The act
of measurement would then create a definite state out of the
indefinite state and changes the state of the system.

We hypothesise that uni-modal sentiment judgments do
not happen independently, like a pre-defined value being
read out of the internal cognitive state. They are rather con-
structed at the point of information interaction and thus in-
fluenced by the other modalities, which serve as a context for
the inference of sentiment judgment for the current modal-
ity. For example, there might be cases that the order of differ-
ent decision perspectives, e.g., when someone focuses first
on the linguistic and then on the visual perspective, or vice
versa, can lead to controversial sentiment judgements. That
is, the measurement from the first perspective provides a
context that affects the subsequent one, influencing the prob-
abilities used to compute the utility function of multimodal
sentiment decision. In this case, we say that these two de-
cision perspectives are incompatible with each other. That
implies that judgements over different modalities cannot be
measured jointly, and quantum probability should hence be
in place (Uprety et al. 2020). We argue that video sentiment
analysis could benefit from the generalized framework of
quantum cognition by capturing the cases of incompatibil-
ity that are not possible with classical probability.

In this work, we introduce a novel decision-level fusion
framework inspired by quantum cognition (Fell et al. 2019).
The goal is to predict the sentiment of utterances in videos,
associated with linguistic, visual, and acoustic streams. In
particular, we formulate an utterance as a quantum superpo-
sition state of positive and negative sentiments (i.e., it can be



positive and negative at the same time until it is judged under
a specific context), and uni-modal classifiers as mutually in-
compatible observables, on a shared complex-valued Hilbert
space H spanned by distinct uni-modal sentiment bases. In
this work, we take advantage of incompatibility to influence
the uni-modal decisions, when they are under high uncer-
tainty, to finally infer multimodal sentiment judgments. It
is important to note that the framework produces a gener-
alization form of classical probabilities, allowing for both
compatible and incompatible sentiment decisions.

Specifically, we resolve the incompatibility issue through
Positive-Operator Valued Measures (POVMs) to approxi-
mate the sentiment of uni-modal classifiers simultaneously.
In practice, we estimate the complex Hilbert Space and uni-
modal observables from training data, and then establish the
final multimodal sentiment state of a test utterance from the
learned uni-modal observables.

To our best knowledge, this is the first quantum cogni-
tively inspired theoretical approach, with practical imple-
mentations, that investigates and models the incompatibility
of sentiment judgments for video sentiment analysis.

Extensive evaluation on two widely used benchmarking
datasets, namely CMU-MOSI(Zadeh et al. 2016) and CMU-
MOSEI(Bagher Zadeh et al. 2018), show that our frame-
work significantly outperforms not only various represen-
tative decision-level fusion baselines, but also a range of
SOTA content-level fusion approaches for video sentiment
analysis. We also show that the framework is able to make
correct sentiment judgments even for the cases where all
uni-modal classifiers give wrong predictions.

Related Work
Video Sentiment Analysis
Existing recurrent neural structures have achieved SOTA re-
sults for utterance-level video sentiment analysis. One ex-
ample is memory networks incorporating multimodal hid-
den units of preceding timestamps with the inputs (Wang
et al. 2019b; Liang et al. 2018; Zadeh et al. 2018). Tensor-
based operations had also been exploited to entangle (Zadeh
et al. 2017) and disentangle (Liu et al. 2018; Barezi and
Fung 2019) multimodal information. Inspired from suc-
cessful trends in NLP, some approaches introduced fuzzy
logic (Chaturvedi et al. 2019) and encoder-decoder struc-
tures in sequence-to-sequence learning, translating a target
modality to a source modality (Pham et al. 2019; Dumpala
et al. 2019). Multimodal transformer (Tsai et al. 2019)
achieved the SOTA for video sentiment analysis. It is worth
mentioning that there exist research focusing on unaligned
time-series streams (Wang et al. 2019b), but those ap-
proaches are beyond the scope of this work.

Quantum-inspired Representation Learning
The application of quantum theory in representation learn-
ing began after van Rijsbergen’s pioneering work (Van Ri-
jsbergen 2004) by integrating geometric spaces and prob-
abilistic spaces into a unified theoretical framework. The
mathematical formalism of QM has been exploited for In-
formation Retrieval (IR), NLP, and multimodal representa-

tion learning tasks. Among them, quantum formalism has
been successfully utilised for modelling word dependencies
through density matrices (Sordoni, Nie, and Bengio 2013)
and formulating the semantic composition of words (Sor-
doni, He, and Nie 2013) in IR tasks. Quantum-inspired
models have also been introduced to address NLP tasks.
Early work deployed neural networks to learn entangled
text representations for question-answering tasks (Zhang
et al. 2018a). The exploitation of quantum concepts in
complex-valued Hilbert spaces led to improved perfor-
mance and better interpretability (Wang et al. 2019a; Li,
Wang, and Melucci 2019). A quantum-inspired recurrent
network addressed interactions across speakers in conver-
sations (Zhang et al. 2019). Quantum-inspired strategies
have been utilised for multimodal representation learning
as well: Wang et al. (Wang, Song, and Kaliciak 2010) pro-
posed a tensor-based representation to retrieve image-text
documents. Moreover, there have been studies that investi-
gated quantum interference (Zhang et al. 2018b) and non-
classical correlations (Gkoumas, Uprety, and Song 2018)
to address the decision-level modality fusion. Recently, a
quantum-inspired neural framework achieved the SOTA per-
formance for utterance-level video sentiment analysis (Li
et al. 2020). Unlike these existing works, in this paper, we
propose a quantum cognition inspired theoretical framework
capturing cognitive biases that are not possible with classical
probability, through the concept of incompatibility.

Background of Quantum Cognition
In this section, we introduce the key concepts from quan-
tum cognition (Busemeyer and Bruza 2012; Fell et al. 2019),
which we exploited to construct the proposed framework.

Hilbert Space
Quantum cognition exploits an infinite complex-valued vec-
tor space, called Hilbert space H, in which the state of a
quantum system is represented as a vector. Different from
classical probability, quantum probability events are defined
as orthonormal basis states. A projective geometric struc-
ture establishes relationships between states vectors and ba-
sis states (Melucci 2008). The same Hilbert space can be
represented by different sets of orthonormal basis states, and
the same state can be defined over different sets of orthonor-
mal basis states.

In consistency with QM, we adopt the widely-used Dirac
Notations for the mathematical formalism of quantum cog-
nition. A complex-valued unit vector ~u and its conjugate
transpose ~u∗T are denoted as a ket |u〉 and a bra 〈u|, re-
spectively. The inner product of two vectors |u〉 and |v〉 is
defined by 〈u|v〉, while |u〉 〈u| and |v〉 〈v| define operators.

Quantum Superposition
Quantum superposition is one of the fundamental concepts
in QM, which describes the uncertainty of a single particle.
In the micro world, a particle like a photon can be in mul-
tiple mutually exclusive basis states simultaneously with a
probability distribution. A general pure state |ψ〉 is a vector



on the unit sphere, represented by

|ψ〉 = w1 |e1〉+ ...+ wn |en〉 . (1)

Where |e1〉 , ..., |en〉 are basis states that form an orthogonal
basis of the Hilbert Space, and the probability amplitudes
{wj} are complex scalars with

∑
j |wj |2 = 1, with | · | being

the modulus of a complex number. |ψ〉 is a superposition
state when it is not identical to a certain basis state |ej〉. In
particular, in a two-dimensional Hilbert Space H2 spanned
by basis states |0〉 and |1〉, a pure state |ψ〉 is represented as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (2)

while θ, φ ∈ [0, 2π] and i is the imaginary number satisfying
i2 = −1. Eq. 2 uniquely expresses any pure state onH2.

Measurement
Measurement is another fundamental concept in quantum
cognition for calculating quantum probabilities. In QM,
Projection-Valued Measure (PVM) removes a system state
from uncertainty to a precise event, by projecting a state
to its corresponding certain basis state 1. In the absence
of measurement, there is uncertainty in the state in that it
takes all possible measurement values simultaneously. Af-
ter measurement, the state collapses onto precisely one pos-
sible value. However, PVMs on subsystems of larger sys-
tems cannot be described by a PVM acting on the subsys-
tem itself. Positive-Operator Valued Measure (POVM) over-
comes this constraint, by associating a positive probability
for each measurement outcome, ignoring the post-measure
state (Nielsen and Chuang 2011). That is, POVM is a gen-
eralization of PVM, providing mixed information of a state
for the entire ensemble of subsystems.

Mathematically speaking, a POVM M is a set of Hermi-
tian positive semi-definite operators {Ei} on a Hilbert space
H that sum to the identity operator, i.e.,

∑
iEi = 1. For a

generic pure state’s density matrix ρ, where ρ = |ψ〉 〈ψ|, the
probability with respect to Ei is computed as

P (i) = Tr(Eiρ) = 〈ψ|Ei |ψ〉 , (3)
and

∑
P (i) = 1.

In the case of measuring a state on a two-dimensional
Hilbert Space H2 (see Eq. 2), the POVM is associated with
the following operators (Busch 1986):

E+ =
η

2
I + (1− η) |1〉 〈1| (4)

E− =
η

2
I + (1− η) |0〉 〈0| , (5)

where I and η stand for the identity matrix and noise param-
eter respectively. The value η ∈ [0, 1] determines the proba-
bility that the measurement fails due to the system-apparatus
correlation or incompatibility (Liang, Spekkens, and Wise-
man 2011). When η = 0, the measurement apparatus exerts

1For simplicity, we choose a nomenclature instead of a strict
definition. Please refer to (Nielsen and Chuang 2011) for a strict
definition of projection measurement.

no influence on the measurement, and we have an approxi-
mate measurement. When η = 1, the output of measurement
is completely random.

Incompatibility
The concept of incompatibility is applicable in a Hilbert
space only. Each basis state, defining an event, has a pro-
jector Π to evaluate the event. In contrast to classical proba-
bility, the conjunction of two events is not necessarily com-
mutative (Busemeyer and Wang 2018). Suppose ΠA and
ΠB are two sequential measurements for A and B events.
In quantum cognition, the joint probability distribution of
two events equals the product of the two projectors ΠA and
ΠB , corresponding to the basis state A ∩ B. If ΠAΠB =
ΠBΠA, then the two events are called compatible. However,
if ΠAΠB 6= ΠBΠA, then their product is not a projector, and
the two events do not commute, that is, they are incompati-
ble. Incompatibility implies that the two measurements can-
not be accessed jointly without disturbing each other. Clas-
sical probability can not capture such disturbance, assum-
ing that measurements are always compatible and commute.
However, the mathematical formalism of quantum probabil-
ity allows for both compatible and incompatible measure-
ments (Hughes 1989; Uprety et al. 2020). Thus, it is a gen-
eralization of classical probability theory.

Quantum Cognition-inspired Framework
We now introduce the proposed quantum cognition-inspired
theoretical framework for video sentiment analysis.

Task Formulation
Due to space limitation, this work targets at the binary
video sentiment analysis task. However, the framework is
extendable, by adopting an one-vs-all multiclass classifica-
tion strategy. Each utterance Ui ∈ {U1, ..., UN} is asso-
ciated with linguistic, visual and acoustic features Ui =
{Xi,l, Xi,v, Xi,a} and a positive or negative sentiment label
yi ∈ [−1, 1]. The objective is to establish a function, map-
ping an utterance Ui to its corresponding sentiment label.

Sentiment Hilbert Space
The framework is defined on a Sentimental Hilbert Space
Hsenti, which is a 2-dimensional vector space spanned by
the basis states {|+〉 , |−〉}. The basis states |+〉, |−〉 corre-
spond to positive and negative sentiments, respectively. We
represent an utterance Uk as a pure state |SUk

〉 (in short |S〉)
on Hsenti. The uni-modal sentiment classifiers (denoted as
L, V,A) are formulated as mutually incompatible observ-
ables (see Figure 1). The utterance can be represented un-
der different sets of basis states, i.e., uni-modal (L, V,A)
and multimodal (F ) basis states in Figure 1. The observables
are not orthogonal since modalities are not independent, but
highly correlated.

Utterance Representation
An utterance is represented as a pure state |S〉 of positive
and negative sentiments onHsenti (see Figure 1). On this 2-
dimensional Hilbert space, it adopts a generic representation
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Figure 1: The Sentimental Hilbert Space. An utterance is
represented as a pure state |S〉 belonging to the surface of a
unit sphere. The two opposed unit vectors represent positive
and sentiment judgments. The associated uni-modal senti-
ment observables L̂, V̂ , Â and tri-modal observable F̂ are
mutually incompatible. Shadowed basis vectors imply pro-
jections of |S〉 on the corresponding bases, i.e., probability
of events.

|S〉 = cos
θS
2
|+〉+ eiφS sin

θS
2
|−〉 , (6)

where θS , φS ∈ [0, 2π]. According to the Born’s rule (Born
1926), the probability of an utterance being positive and
negative is P (+) = | 〈S|+〉 |2 = cos2 θS2 and P (−) =

| 〈S|−〉 |2 = sin2 θS
2 , with cos2 θS2 + sin2 θS

2 = 1. The rel-
ative phase φS gives rise to different results from classical
case. Crucially, relative phases play an important role in cor-
relations between incompatible observables.

Sentiment Decisions
We formulate uni-modal sentiment decisions as mutually in-
compatible observables on Hsenti, namely L̂, V̂ , and Â for
linguistic, visual and acoustic modalities respectively (see
Figure 1). For the binary sentiment analysis task, each ob-
servable is associated with two eigenstates and two eigen-
values, with common eigenvalues of 1 and −1 for positive
and negative sentiments. In that case, incompatibility falls
under different sets of eigenstates {|M,+〉 , |M,−〉} defin-
ing a uni-modal basis, where modality M ∈ {L, V,A}. Fol-
lowing Eq. 6, we express the eigenstates as

|M,+〉 = cos
θM
2
|+〉+ eiφM sin

θM
2
|−〉 (7)

|M,−〉 = sin
θM
2
|+〉 − eiφM cos

θM
2
|−〉 (8)

with θM , φM ∈ [0, 2π]. The eigenstates form an orthonor-
mal basis, with 〈M,+|M,+〉 = 〈M,−|M,−〉 = 1 and
〈M,+|M,−〉 = 〈M,−|M,+〉 = 0.

A general observable Ô can be decomposed to its eigen-
states {|λi〉} of the orthonormal basis as Ô = λi |λi〉 〈λi|,
where eigenvalues {λi} are possible values that a state can
take for the corresponding events after measurement. Thus,
the uni-modal observables are defined as follows:

M̂ = (+1) |M,+〉 〈M,+|+ (−1) |M,−〉 〈M,−|(9)

where observable M̂ ∈ {L̂, V̂ , Â}. Similarly, the observable
for the final sentiment decision F̂ is

F̂ = (+1) |+〉 〈+|+ (−1) |−〉 〈−| (10)

which spans the Hsenti and is incompatible with all uni-
modal observables.

Following the projective geometric structure, the result
probability of a measurement on an eigenstate equals the
projection of the state onto it, that is, the squared inner prod-
uct of the vectors, e.g., | 〈S|M,+〉 |2 for unimodal positive
sentiment and | 〈S|+〉 |2 for final (multimodal) positive sen-
timent. The measurement probabilities under L̂ stand for its
sentiment under linguistic modality, as so forth for the other
modalities. Finally, its multimodal sentiment is determined
by the observable F̂ . In Figure 1, the sentiment judgment is
positive in terms of uni-modal observables (projections are
visualized as shadows in Figure 1), yet is negative in terms
of the multimodal observable due to incompatibility.

Method
This section presents a methodology that operationalizes
the proposed framework. Traditionally, in the physical sci-
ences, the study of mathematical problems involves mod-
elling methods leveraging a combination of approximation
techniques. In this work, we exploit statistical information
from the data to learn the sentimental Hilbert Space de-
scribed in the previous section, so as to leverage the incom-
patible observables to determine the sentiment of an utter-
ance. Overall, the pipeline consists of three steps: (1) we
first estimate the generic uni-modal observables M̂ from
the training data; (2) then we construct the sentiment state
for each test utterance |ST 〉 from the learned uni-modal ob-
servables and uni-modal sentiment prediction results; (3) fi-
nally, we judge the sentiment from the multimodal observ-
able F̂ . In the remaining part of the section, we elaborate the
methodology for each step.

Observable Estimation
The uni-modal observables are constructed from the overall
statistics of the training data. These values are mapped to
their quantum expressions to estimate the parameters of the
uni-modal observables. In particular, the uni-modal observ-
ables and pure state should submit to the following prop-
erties: I) the pure state should conform to the statistics of
the dataset, II) the uni-modal sentiment measurement results
should be consistent with the ratio of positive and negative
samples in the training subsets, and III) quantum correla-
tions between observables should be aligned to classical cor-
relations of the per-sample prediction results, derived from
the training data.



To facilitate the construction of uni-modal observables,
we introduce a pure state as follows:

|G〉 = cos
θG
2
|+〉+ eiφG sin

θG
2
|−〉 , (11)

which describes the extent to which the dataset is unbal-
anced for positive and negative labels. By Born’s rule (Born
1926), the probability of positive judgment is:

P (+) = | 〈+|G〉 |2 ≈ #pos

N
, (12)

where #pos is the number of true positive utterances in the
training set and N the size of the training set. Eq.12 implies

cos2
θG
2
≈ #pos

N
, (13)

since the quantum probability equals the squared amplitude
of a state (see Section Background or (Melucci 2015)).

According to the second property, the probability of a pos-
itive sentiment judgment for each modality is given by

PM (+) = | 〈M,+|G〉 |2 ≈ #Mpos

N
, (14)

where #Lpos, #Vpos and #Apos equals the number of true
positive utterances for each modality in the training set.
Combining Eq.7, Eq.11 and Eq.14, the probability of the
positive sentiment judgment for each modality is

cos2
θM
2

cos2
θG
2

+ sin2 θM
2

sin2 θG
2

+
1

2
sin θM sin θG cos(φM − φG) ≈ #mpos

N
.

(15)

Finally, we looked into the correlations between pairs of
uni-modal observables, where the relative phases play an
important role. From a quantum statistics point of view,
the correlation of observables for two modalities M1,M2

is given by (| 〈M1,+|M2,+〉 |2 + | 〈M1,−|M2,−〉 |2 −
| 〈M1,+|M2,−〉 |2 − | 〈M1,−|M2,+〉 |2). A more detailed
explanation about the derivation is included in Appendix I.
It should in principle be aligned to the classical correlations
derived from the data. Hence we have

1

2

(
| 〈M1,+|M2,+〉 |2 + | 〈M1,−|M2,−〉 |2

− | 〈M1,+|M2,−〉 |2 − | 〈M1,−|M2,+〉 |2
)

≈ corr(M1,M2),

(16)

where M1 6= M2 ∈ {L, V,A} and corr(M1,M2) is a
classical correlation of the per-sample prediction results
based on modalities M1 and M2, which is computed from
the training data. When M1 and M2 give exactly same
predictions, the correlation corr(M1,M2) = 1. There-
fore, | 〈M1,+|M2,+〉 | = | 〈M1,−|M2,−〉 |2 = 1 and
| 〈M1,+|M2,−〉 |2 = | 〈M1,−|M2,+〉 |2 = 0, so the value
1 is also produced from the quantum side. Similarly, a value
of -1 is obtained for both sides when the two modalities give
totally opposite predictions, indicating the maximum nega-
tive correlation. Hence, Eq.16 gives three equations for dis-
tinct pairs of modalities. For example, for linguistic-visual
correlation, Eq.16 results in

cos θL cos θV + sin θL sin θV cos(φL − φV )

≈ corr(L, V ),
(17)

as so forth for the {L,A}, {A, V } modality pairs.
To wrap up, taking into account the number of posi-

tive sentiments in the training set and correlations across
different pairs of modalities, we get 7 equations from
Eq. 13, Eq. 15 and Eq. 16, and 8 unknown variables
{θG, θL, θV , θA, φG, φL, φV , φA}. As all equations rely
only on the differences between the relative phases rather
than their absolute values, we can safely set φG = 0
without loss of information. Hence a unique solution of
{θG, θL, θV , θA, φL, φV , φA} can be produced, and accord-
ingly determining the uni-modal observables L̂, V̂ , and Â.

Utterance State Estimation
After having uni-modal observables calculated as described
above, we need to estimate the state for each test utterance.
For a specific test utterance denoted as

|ST 〉 = cos
θT
2
|+〉+ eiφT sin

θT
2
|−〉 , (18)

the uni-modal predictions can be exploited to estimate the
values of θT , φT . However, since the observables L̂, V̂ , and
Â are mutually incompatible, the measurements results can-
not be accessed simultaneously. To that end, we propose
utilize POVMs to get the results of all incompatible mea-
surements simultaneously (Uola et al. 2016). In particular,
we construct sample-specific POVMs for each uni-modal
measurement, applying unsharp (weak) projections (Busch
1986) without disturbing the observables. Finally, the oper-
ators are constructed as follows:

EM± =
ηT
2
I + (1− ηT ) |M,±〉 〈M,±| , (19)

where ηT ∈ [0, 1] is specific to sample t, since each utter-
ance interacts with the apparatus in a different manner. We
apply uni-modal POVMs on the test utterance to measure
the sentiment of utterance in terms of each modality, that is,

〈ST |EM+ |ST 〉 ≈ PT,M (+), (20)

where PT,M (+) are uni-modal probabilities for the posi-
tive sentiment judgment. Eq.20 gives a system with three
equations, each equation for a distinct modality, and three
unknown variables {θT , φT , ηT }. Solving the system would
allow us to construct the state |ST 〉.

Multimodal Sentiment Measurement
The sentiment of a test utterance |ST 〉 is measured by Eq. 10.
The results are PT (+) = cos2 θT2 and PT (−) = sin2 θT

2 .
The sentiment of ST is hence positive if cos2 θT2 > 0.5 and
negative otherwise.

Experiments
We evaluate the proposed framework on two benchmark-
ing datasets, namely, CMU Multimodal Opinion-level Sen-
timent Intensity (CMU-MOSI) (Zadeh et al. 2016) and
CMU Multimodal Opinion Sentiment and Emotion Inten-
sity (CMU-MOSEI) (Bagher Zadeh et al. 2018). For both
datasets, each sample is labelled by three human annota-
tors with a 7-level ratio score from -3 (highly negative) to 3



(highly positive). In this work, we adopt the binary accuracy
(i.e.,Acc2 : positive sentiment if the human annotation score
≥ 0, and negative sentiment if the human annotation score
< 0), and F1 score. The statistical details of the datasets and
feature extraction are included in Appendix II and III.

Baselines
We compared with robust approaches on both decision-level
and feature-level modality fusion approaches.

Decision-level: We first trained neural uni-modal classi-
fiers. In particular, we used Bi-GRU layers (Cho et al. 2014)
with forward and backward state concatenation, followed by
fully connected layers. The outputs gave linguistic, visual,
and acoustic embeddings {L, V,A} ∈ Rd, where d was
the number of neurons in dense layers. Then, self-attentions
were computed for each uni-modal dense representation, by
calculating the scaled dot-product (Vaswani et al. 2017). Fi-
nally, each attentive uni-modal representation was fed into
two fully connected layers, followed by a softmax layer to
obtain sentiment judgments. We leave the final settings in
Appendix IV. The unimodal results are then fed into the mul-
timodal meta-fusion approaches. We compare with a range
of baseline fusion approaches:

• Voting was used to aggregate the outputs of the uni-modal
classifiers. In particular, we applied a) Hard Voting, via
majority voting, b) Weighted Majority Voting, by assign-
ing weights to each uni-modal classifier and taking their
average, and c) Soft Voting, by averaging the predicted
probabilities, to infer multi-modal sentiment judgments.

• Single models exploited supervised machine learning al-
gorithms as meta fusion approaches of the uni-modal clas-
sifiers. For both tasks, we chose the most effective mod-
els, namely, a) Logistic Regression, b) Support Vector
Machine (SVM), and c) Gaussian Naive Bayes (Gaus-
sianNB), from a pool of supervised learning algorithms.

• Ensemble methods combined learning algorithms, se-
lecting the optimum combination from a pool of mod-
els. We explored stacking, backing, and boosting strate-
gies (Ponti Jr 2011); a) for stacking, single models were
stacked together and the hard voted method computed
predictions, b) for bagging, a number of estimators were
aggregated by majority voting, and c) for boosting, we
applied AdaBoost classifier (Freund and Schapire 1997).

• A Deep Fusion approach combined the confidence scores
of uni-modal classifiers along with the complementary
scores as inputs to a deep neural network, followed by
a sigmoid layer, which made the final prediction (Noja-
vanasghari et al. 2016).

Feature-level: We also compared the framework with a
range of SOTA feature-level fusion approaches.
• For SOTA, we replicated a) MulT (Tsai et al. 2019), con-

sisting of pairwise crossmodal transformers, the outputs
of which are concatenated to build the multimodal embed-
ding utterance, b) RAVEN (Wang et al. 2019b), an RNN
based framework with an attention gating mechanism
to model crossmodal interactions, and c) TFN (Zadeh

et al. 2017), a tensor-based neural network that a multi-
dimensional tensor captures uni-modal, bi-modal, and tri-
modal interactions across distinct modalities.

• QMF (Li et al. 2020) is a complex-valued neural frame-
work, which represents utterances as superposed states,
and incorporates modalities through a tensor operator.

Experiment Settings
We conducted the experiments on the same uni-modal clas-
sifiers trained for the decision-level baseline approaches. We
estimated the uni-modal observables from training plus val-
idation sets, and then we used the learnt observables for pre-
dicting the utterance sentiment on the test set. We used Pear-
son correlation for modelling classical correlations. In case
the equation systems of the framework did not have solu-
tions, the MATLAB fsolve function was used to generate a
numerical solution. In particular, we randomly initialized the
parameters {θG, θL, θV , θA, φL, φV , φA} ∈ [0, 2π] for uni-
modal observable estimation, and {θT , φT } ∈ [0, 2π], ηT ∈
[0, 1] for utterance state estimation. The random initializa-
tion was repeated for 200 times to obtain the optimum solu-
tions by calculating the minimum sum of squared loss.

Comparative Analysis of Results
For both tasks, we present the comparison results between
the proposed framework and various decision-level fusion
strategies in Table 1. For CMU-MOSEI, all approaches at-
tained an improved performance as compared to the perfor-
mance of CMU-MOSI task. We suspect this is because MO-
SEI is a much larger dataset. Overall, Weighted Voting is
the best-performing approach among the voting-based ag-
gregations, Logistic Regression among the supervised learn-
ing algorithms, and Stacking among the ensemble learning
methods. For both tasks, Stacking and Bagging are the most
effective baseline decision-level fusion strategies. For CMU-
MOSI, the proposed framework attain an increased accu-
racy of 84.6% as compared to 78.4% of Stacking. That is,
a significant improvement of 6.2% (p − value < 0.05).
For CMU-MOSEI, the framework reaches an increased ac-
curacy of 84.9% as compared to 82.2% of Stacking, i.e., a
significant improvement of 2.7% (p− value < 0.05).

CMU-MOSI CMU-MOSEI

Approach Acc2 F1 Acc2 F1
Hard Voting 67.5 65.4 71.5 83.3
Weighted Voting 74.6 71.6 81.3 87.8
Soft Voting 75.2 71.9 77.5 86.2
SVM 77.4 72.9 81.7 87.9
Logistic Regression 78.0 73.8 81.9 88.0
GaussianNB 76.7 71.6 80.9 86.8
Stacking 78.4 75.1 82.2 88.1
Bagging 78.1 73.6 82.0 88.0
Boosting 77.7 74.0 81.7 87.7
Deep Fusion 77.8 77.7 81.9 81.3
Proposed Framework 84.6 (↑ 6.2) 84.5 (↑6.8 ) 84.9 (↑ 2.7) 91.1 (↑3.0)

Table 1: Effectiveness of decision-level fusion approaches
on CMU-MOSI and CMU-MOSEI. Best results are high-
lighted in boldface. Numbers in parentheses indicate relative
percentage improvement over the next best model.



Table 2 presents the comparison results between the in-
troduced framework and various feature-level fusion ap-
proaches. For CMU-MOSI, TFN (Zadeh et al. 2017) is
the most effective among the baseline feature-level fusion
approaches. The proposed framework attain an improve-
ment in accuracy by 3.4% (see Table 2). For CMU-MOSEI,
RAVEN (Wang et al. 2019b) attains the highest accuracy
among the baselines. The proposed framework yields an
increased accuracy of 84.9% as compared to 80.2% of
RAVEN, i.e., 4.7% improvement.

We notice that the decision-level feature strategies achieve
better performance than the feature-level neural approaches
on CMU-MOSEI. This implies that discriminative learning
approaches can benefit from large datasets, whereas neural
approaches lead to overfitting. We also observe that the pro-
posed framework achieves a similar performance both on
CMU-MOSI and CMU-MOSEI, even though CMU-MOSI
is a relatively balanced dataset. That is, our framework can
effectively cope with both skewed and balanced datasets.

CMU-MOSI CMU-MOSEI

Approach Acc2 F1 Acc2 F1
MulT (Tsai et al. 2019) 80.2 79.5 80.0 79.8
RAVEN (Wang et al. 2019b) 78.6 78.6 80.2 79.9
TFN (Zadeh et al. 2017) 81.2 80.8 77.8 77.8
QMF (Li et al. 2020) 80.7 79.7 79.7 79.6
Proposed Framework 84.6 (↑ 3.4) 84.5 (↑3.7 ) 84.9 (↑ 4.7) 91.1 (↑11.2)

Table 2: Effectiveness of feature-level fusion approaches.

Ablation Tests Table 3 shows the results of our ablation
study. The first three rows list the performance of uni-modal
classifiers when no crossmodal interactions are modelled.
The linguistic modality is the most predictive due to the
use of word embedding trained on large corpora. For CMU-
MOSEI, the linguistic classifier outperforms all the feature-
level and voting-based fusion approaches, illustrating the ro-
bustness of uni-modal classifiers.

CMU-MOSI CMU-MOSEI

Approach Acc2 F1 Acc2 F1
Linguistic Only 77.1 72.3 81.5 87.8
Visual Only 54.7 48.4 71.1 83.0
Acoustic Only 56.1 60.0 71.2 83.1
Proposed Framework 84.6 (↑ 7.5) 84.5 (↑12.2 ) 84.9 (↑ 3.4) 91.1 (↑3.3)

Table 3: Comparison with uni-modal sentiment analysis
classifiers.

As a second set of ablation experiments, we test the pro-
posed framework when only bimodal dynamics are present.
We present the result in Table 4, which shows the linguistic
and acoustic dynamics are the most informative. However,
trimodal dynamics outperform all possible bimodal combi-
nations, yielding an improvement of accuracy by 5.0% for
CMU-MOSI, and 2.2% for CMU-MOSEI.

Effect of Incompatibility We conduct a further analysis
to investigate the effectiveness of incompatibility. We first
identified all the cases that are correctly predicted by one
out of the eleven decision-level fusion approaches. In total,

CMU-MOSI CMU-MOSEI

Approach Acc2 F1 Acc2 F1
Framework{Linguistic,V isual} 78.2 74.3 82.1 88.4
Framework{Linguistic,Acoustic} 79.6 75.1 82.7 89.2
Framework{V isual,Acoustic} 55.1 55.2 70.8 82.7
Proposed Framework 84.6 (↑ 5.0) 84.5 (↑9.4 ) 84.9 (↑ 2.2) 91.1 (↑1.9)

Table 4: Comparison of the framework with its variants.

Figure 2: Visual-acoustic content of an incompatible case.

there were 33 such cases on CMU-MOSI and 1547 ones on
CMU-MOSEI test sets. The proposed framework gives cor-
rect predictions for 31 cases out of 33 on CMU-MOSI and
all the 1547 cases on CMU-MOSEI. Furthermore, we ana-
lyze the cases that all uni-modal classifiers give wrong sen-
timent judgments, but the proposed framework successfully
fused them giving correct predictions. There are 39 such ut-
terances out of 686 on the CMU-MOSI and 633 utterances
out of 4643 on the CMU-MOSEI subsets.

Case Study We illustrate the visual-acoustic content of an
incompatible case of the utterance “I mean even if you don’t
have kinds” in Figure 2. The linguistic state by itself is in
an indefinite state, which results in a superposition of senti-
ment judgments. Similarly, the visual-acoustic content is un-
der uncertainty since the content is neutral. Indeed, all uni-
modal classifiers predicted a negative sentiment judgment,
inferring a probability less than 0.5, yet very close to the de-
cision boundary of 0.5. This superposition of uni-modal be-
liefs, i.e., positive and negative sentiment at the same time
until they are judged under a specific context, results in
the occurrence of incompatibility. Under the high levels of
uncertainty, incompatibility influences the uni-modal judg-
ments and successfully predicts a positive multimodal senti-
ment judgment. This phenomenon is the core of the frame-
work and the reason it achieves such high performance.

Conclusions
We introduced an effective fusion strategy inspired by quan-
tum cognition. We formulated utterances as states and uni-
modal decisions as mutually incompatible observables in a
complex-valued sentimental Hilbert space. The incompati-
bility captures cognitive biases that are otherwise not pos-
sible with classical probability. The proposed framework
has been shown able to all combination patterns including
the cases where all uni-modal classifiers gave wrong senti-
ment judgments. Therefore, the proposed approach achieved
an improved performance over SOTA feature-level and
decision-level modality fusion approaches. In the future, we
would like to investigate the framework on the video emo-
tion recognition and conversational sentiment analysis tasks.
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